The ANSS event ID is us10004aqg and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us10004aqg/executive.
2016/01/01 11:39:39 35.669 -97.406 5.8 4.2 Oklahoma
USGS/SLU Moment Tensor Solution
ENS 2016/01/01 11:39:39:0 35.67 -97.41 5.8 4.2 Oklahoma
Stations used:
AG.FCAR AG.HHAR AG.WHAR GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08
GS.KAN10 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN14 GS.KAN16
GS.KAN17 GS.OK030 GS.OK031 GS.OK035 N4.237B N4.R32B N4.R40B
N4.S39B N4.T35B N4.U38B N4.Z35B N4.Z38B NM.MGMO OK.BCOK
OK.CCOK OK.CHOK OK.CROK OK.FNO OK.OKCFA OK.QUOK OK.X34A
OK.X37A TA.435B TA.MSTX TA.TUL1 TA.U40A TA.W39A TA.W41B
TA.WHTX TA.X40A TA.Z41A US.AMTX US.CBKS US.KSU1 US.MIAR
US.NATX US.WMOK
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.99e+22 dyne-cm
Mw = 4.25
Z = 4 km
Plane Strike Dip Rake
NP1 30 85 175
NP2 120 85 5
Principal Axes:
Axis Value Plunge Azimuth
T 2.99e+22 7 345
N 0.00e+00 83 165
P -2.99e+22 0 75
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.53e+22
Mxy -1.50e+22
Mxz 3.52e+21
Myy -2.58e+22
Myz -9.64e+20
Mzz 4.52e+20
T ###########
#### ##############-
#######################-----
########################------
#########################---------
#########################-----------
----#####################------------
-------##################------------- P
----------##############--------------
--------------##########------------------
-----------------######-------------------
--------------------##--------------------
---------------------##-------------------
-------------------#######--------------
------------------###########-----------
----------------################------
-------------######################-
-----------#######################
--------######################
------######################
-#####################
##############
Global CMT Convention Moment Tensor:
R T P
4.52e+20 3.52e+21 9.64e+20
3.52e+21 2.53e+22 1.50e+22
9.64e+20 1.50e+22 -2.58e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160101113939/index.html
|
STK = 120
DIP = 85
RAKE = 5
MW = 4.25
HS = 4.0
The NDK file is 20160101113939.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2016/01/01 11:39:39:0 35.67 -97.41 5.8 4.2 Oklahoma
Stations used:
AG.FCAR AG.HHAR AG.WHAR GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08
GS.KAN10 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN14 GS.KAN16
GS.KAN17 GS.OK030 GS.OK031 GS.OK035 N4.237B N4.R32B N4.R40B
N4.S39B N4.T35B N4.U38B N4.Z35B N4.Z38B NM.MGMO OK.BCOK
OK.CCOK OK.CHOK OK.CROK OK.FNO OK.OKCFA OK.QUOK OK.X34A
OK.X37A TA.435B TA.MSTX TA.TUL1 TA.U40A TA.W39A TA.W41B
TA.WHTX TA.X40A TA.Z41A US.AMTX US.CBKS US.KSU1 US.MIAR
US.NATX US.WMOK
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.99e+22 dyne-cm
Mw = 4.25
Z = 4 km
Plane Strike Dip Rake
NP1 30 85 175
NP2 120 85 5
Principal Axes:
Axis Value Plunge Azimuth
T 2.99e+22 7 345
N 0.00e+00 83 165
P -2.99e+22 0 75
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.53e+22
Mxy -1.50e+22
Mxz 3.52e+21
Myy -2.58e+22
Myz -9.64e+20
Mzz 4.52e+20
T ###########
#### ##############-
#######################-----
########################------
#########################---------
#########################-----------
----#####################------------
-------##################------------- P
----------##############--------------
--------------##########------------------
-----------------######-------------------
--------------------##--------------------
---------------------##-------------------
-------------------#######--------------
------------------###########-----------
----------------################------
-------------######################-
-----------#######################
--------######################
------######################
-#####################
##############
Global CMT Convention Moment Tensor:
R T P
4.52e+20 3.52e+21 9.64e+20
3.52e+21 2.53e+22 1.50e+22
9.64e+20 1.50e+22 -2.58e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160101113939/index.html
|
Regional Moment Tensor (Mwr) Moment 2.707e+15 N-m Magnitude 4.22 Depth 4.0 km Percent DC 99% Half Duration – Catalog US (us10004aqg) Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 307 75 13 NP2 213 77 165 Principal Axes Axis Value Plunge Azimuth T 2.711 20 170 N -0.008 70 354 P -2.703 1 260 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 305 90 -5 4.03 0.4045
WVFGRD96 2.0 125 80 10 4.15 0.5054
WVFGRD96 3.0 125 80 10 4.21 0.5520
WVFGRD96 4.0 120 85 5 4.25 0.5683
WVFGRD96 5.0 120 85 5 4.28 0.5662
WVFGRD96 6.0 125 80 10 4.30 0.5562
WVFGRD96 7.0 125 80 10 4.33 0.5475
WVFGRD96 8.0 125 80 15 4.36 0.5396
WVFGRD96 9.0 125 80 15 4.37 0.5192
WVFGRD96 10.0 125 80 15 4.38 0.4993
WVFGRD96 11.0 125 80 15 4.39 0.4819
WVFGRD96 12.0 125 80 15 4.39 0.4642
WVFGRD96 13.0 305 80 20 4.40 0.4476
WVFGRD96 14.0 120 90 -20 4.41 0.4304
WVFGRD96 15.0 120 90 -20 4.41 0.4187
WVFGRD96 16.0 120 90 -20 4.42 0.4080
WVFGRD96 17.0 120 90 -20 4.42 0.3979
WVFGRD96 18.0 305 80 20 4.43 0.3942
WVFGRD96 19.0 120 90 -20 4.43 0.3803
WVFGRD96 20.0 305 80 20 4.44 0.3781
WVFGRD96 21.0 125 90 -20 4.44 0.3673
WVFGRD96 22.0 305 80 20 4.45 0.3649
WVFGRD96 23.0 125 90 -20 4.45 0.3568
WVFGRD96 24.0 125 90 -20 4.46 0.3526
WVFGRD96 25.0 305 85 20 4.47 0.3513
WVFGRD96 26.0 215 80 15 4.47 0.3524
WVFGRD96 27.0 215 80 15 4.48 0.3574
WVFGRD96 28.0 215 80 15 4.49 0.3610
WVFGRD96 29.0 215 80 15 4.50 0.3654
The best solution is
WVFGRD96 4.0 120 85 5 4.25 0.5683
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00