The ANSS event ID is ci37507576 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ci37507576/executive.
2015/12/30 01:48:57 34.191 -117.413 7.0 4.4 Canada
USGS/SLU Moment Tensor Solution ENS 2015/12/30 01:48:57:0 34.19 -117.41 7.0 4.4 Canada Stations used: AZ.BZN AZ.CRY AZ.FRD AZ.KNW AZ.LVA2 AZ.MONP2 AZ.RDM AZ.RRSP AZ.SND AZ.TMSP AZ.TRO AZ.WMC BC.CPX BC.SFX BC.TJX BC.UABX BK.HELL BK.KCC BK.ORV BK.SAO BK.SUTB CI.ADO CI.ARV CI.BAK CI.BAR CI.BBR CI.BC3 CI.BCW CI.BEL CI.BLY CI.CCC CI.CIA CI.CWC CI.DAN CI.DEC CI.DGR CI.DPP CI.EDW2 CI.FOX2 CI.FUR CI.GLA CI.GMR CI.GSC CI.HEC CI.IKP CI.IRM CI.ISA CI.MLAC CI.MOP CI.MPP CI.MTP CI.MUR CI.MWC CI.NCH CI.NEE2 CI.NJQ CI.OAT CI.OSI CI.PASC CI.PLM CI.PMD CI.RPV CI.RRX CI.SCI2 CI.SDD CI.SHO CI.SMR CI.SMW CI.SNCC CI.SPG2 CI.SVD CI.SWS CI.SYN CI.SYP CI.TUQ CI.VCS CI.VES CI.WAS2 CI.WOR IU.TUC LB.MVU LB.TPH NC.MCB NN.CTC NN.LHV NN.MPK NN.PAH NN.PRN NN.QSM NN.RUB NN.SHP NN.SPR3 NN.V12A NN.VCN PB.B082A PB.B086A PB.B088A PY.BPH09 PY.BPH13 TA.R11A US.TPNV UU.KNB UU.PKCU UU.SZCU UU.TCRU UU.VRUT UU.ZNPU YN.BCCC YN.JFS1 YN.JORD YN.RHIL YN.TR01 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.94e+22 dyne-cm Mw = 4.33 Z = 10 km Plane Strike Dip Rake NP1 35 85 20 NP2 303 70 175 Principal Axes: Axis Value Plunge Azimuth T 3.94e+22 18 261 N 0.00e+00 69 48 P -3.94e+22 10 167 Moment Tensor: (dyne-cm) Component Value Mxx -3.54e+22 Mxy 1.37e+22 Mxz 4.96e+21 Myy 3.31e+22 Myz -1.27e+22 Mzz 2.34e+21 -------------- ---------------------- -------------------------### -------------------------##### --------------------------######## #########-----------------########## ##############------------############ ###################-------############## ######################---############### ########################--################ #######################-----############## ## #################---------########### ## T ################-----------########## # ##############---------------####### #################------------------##### ##############---------------------### ############-----------------------# ##########------------------------ ######------------------------ ###-------------- -------- -------------- P ----- ---------- - Global CMT Convention Moment Tensor: R T P 2.34e+21 4.96e+21 1.27e+22 4.96e+21 -3.54e+22 -1.37e+22 1.27e+22 -1.37e+22 3.31e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151230014857/index.html |
STK = 35 DIP = 85 RAKE = 20 MW = 4.33 HS = 10.0
The NDK file is 20151230014857.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/12/30 01:48:57:0 34.19 -117.41 7.0 4.4 Canada Stations used: AZ.BZN AZ.CRY AZ.FRD AZ.KNW AZ.LVA2 AZ.MONP2 AZ.RDM AZ.RRSP AZ.SND AZ.TMSP AZ.TRO AZ.WMC BC.CPX BC.SFX BC.TJX BC.UABX BK.HELL BK.KCC BK.ORV BK.SAO BK.SUTB CI.ADO CI.ARV CI.BAK CI.BAR CI.BBR CI.BC3 CI.BCW CI.BEL CI.BLY CI.CCC CI.CIA CI.CWC CI.DAN CI.DEC CI.DGR CI.DPP CI.EDW2 CI.FOX2 CI.FUR CI.GLA CI.GMR CI.GSC CI.HEC CI.IKP CI.IRM CI.ISA CI.MLAC CI.MOP CI.MPP CI.MTP CI.MUR CI.MWC CI.NCH CI.NEE2 CI.NJQ CI.OAT CI.OSI CI.PASC CI.PLM CI.PMD CI.RPV CI.RRX CI.SCI2 CI.SDD CI.SHO CI.SMR CI.SMW CI.SNCC CI.SPG2 CI.SVD CI.SWS CI.SYN CI.SYP CI.TUQ CI.VCS CI.VES CI.WAS2 CI.WOR IU.TUC LB.MVU LB.TPH NC.MCB NN.CTC NN.LHV NN.MPK NN.PAH NN.PRN NN.QSM NN.RUB NN.SHP NN.SPR3 NN.V12A NN.VCN PB.B082A PB.B086A PB.B088A PY.BPH09 PY.BPH13 TA.R11A US.TPNV UU.KNB UU.PKCU UU.SZCU UU.TCRU UU.VRUT UU.ZNPU YN.BCCC YN.JFS1 YN.JORD YN.RHIL YN.TR01 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.94e+22 dyne-cm Mw = 4.33 Z = 10 km Plane Strike Dip Rake NP1 35 85 20 NP2 303 70 175 Principal Axes: Axis Value Plunge Azimuth T 3.94e+22 18 261 N 0.00e+00 69 48 P -3.94e+22 10 167 Moment Tensor: (dyne-cm) Component Value Mxx -3.54e+22 Mxy 1.37e+22 Mxz 4.96e+21 Myy 3.31e+22 Myz -1.27e+22 Mzz 2.34e+21 -------------- ---------------------- -------------------------### -------------------------##### --------------------------######## #########-----------------########## ##############------------############ ###################-------############## ######################---############### ########################--################ #######################-----############## ## #################---------########### ## T ################-----------########## # ##############---------------####### #################------------------##### ##############---------------------### ############-----------------------# ##########------------------------ ######------------------------ ###-------------- -------- -------------- P ----- ---------- - Global CMT Convention Moment Tensor: R T P 2.34e+21 4.96e+21 1.27e+22 4.96e+21 -3.54e+22 -1.37e+22 1.27e+22 -1.37e+22 3.31e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151230014857/index.html |
Regional Moment Tensor (Mwr) Moment 3.761e+15 N-m Magnitude 4.32 Depth 9.0 km Percent DC 89% Half Duration – Catalog US (us10004ac5) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 215 76 -1 NP2 305 89 -166 Principal Axes Axis Value Plunge Azimuth T 3.862 9 79 N -0.210 76 309 P -3.652 10 171 |
TMTS Moment 4.942e+15 N-m Magnitude 4.40 Depth 5.0 km Percent DC 91% Half Duration – Catalog CI (ci37507576) Data Source CI2 Contributor CI2 Nodal Planes Plane Strike Dip Rake NP1 306 68 175 NP2 37 86 22 Principal Axes Axis Value Plunge Azimuth T 5.051 19 264 N -0.225 67 48 P -4.825 12 169 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 30 90 0 3.99 0.4222 WVFGRD96 2.0 210 85 -5 4.10 0.5548 WVFGRD96 3.0 210 80 -30 4.18 0.6130 WVFGRD96 4.0 210 80 -30 4.21 0.6645 WVFGRD96 5.0 210 80 -25 4.23 0.7046 WVFGRD96 6.0 210 80 -25 4.25 0.7346 WVFGRD96 7.0 215 90 -20 4.27 0.7602 WVFGRD96 8.0 210 80 -25 4.31 0.7801 WVFGRD96 9.0 210 85 -20 4.32 0.7896 WVFGRD96 10.0 35 85 20 4.33 0.7958 WVFGRD96 11.0 35 80 20 4.35 0.7956 WVFGRD96 12.0 35 80 20 4.36 0.7912 WVFGRD96 13.0 210 90 -15 4.37 0.7825 WVFGRD96 14.0 35 80 15 4.38 0.7769 WVFGRD96 15.0 210 90 -15 4.39 0.7660 WVFGRD96 16.0 210 90 -15 4.39 0.7559 WVFGRD96 17.0 35 85 15 4.40 0.7480 WVFGRD96 18.0 215 90 -15 4.40 0.7344 WVFGRD96 19.0 35 85 15 4.41 0.7251 WVFGRD96 20.0 35 85 15 4.42 0.7133 WVFGRD96 21.0 215 90 -15 4.42 0.6996 WVFGRD96 22.0 215 90 -15 4.43 0.6873 WVFGRD96 23.0 215 90 -15 4.43 0.6748 WVFGRD96 24.0 215 90 -15 4.44 0.6622 WVFGRD96 25.0 215 90 -10 4.44 0.6493 WVFGRD96 26.0 215 90 -10 4.45 0.6371 WVFGRD96 27.0 215 90 -10 4.45 0.6246 WVFGRD96 28.0 215 90 -10 4.46 0.6122 WVFGRD96 29.0 215 90 -10 4.46 0.5996
The best solution is
WVFGRD96 10.0 35 85 20 4.33 0.7958
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00