The ANSS event ID is nn00523696 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00523696/executive.
2015/12/23 06:46:07 39.431 -119.784 9.7 4.4 Nevada
USGS/SLU Moment Tensor Solution ENS 2015/12/23 06:46:07:0 39.43 -119.78 9.7 4.4 Nevada Stations used: BK.SAO BK.WDC CI.GSC CI.ISA CI.OSI IM.NV31 IW.MFID NC.KEB NC.KHMB NC.KMR NN.COLR NN.CTC NN.EMB NN.GWY NN.KVN NN.LCH NN.LHV NN.MPK NN.PAH NN.PNT NN.PRN NN.QSM NN.RUB NN.RYN NN.SHP NN.SPR3 NN.VCN NN.YER TA.R11A UO.PINE US.TPNV US.WVOR UW.IRON Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.09e+22 dyne-cm Mw = 4.26 Z = 11 km Plane Strike Dip Rake NP1 210 60 -45 NP2 327 52 -141 Principal Axes: Axis Value Plunge Azimuth T 3.09e+22 5 270 N 0.00e+00 38 3 P -3.09e+22 52 174 Moment Tensor: (dyne-cm) Component Value Mxx -1.17e+22 Mxy 1.27e+21 Mxz 1.49e+22 Myy 3.06e+22 Myz -4.00e+21 Mzz -1.89e+22 -------------- --------------------## ##########---------######### ##############---############# #################--############### ################------############## ###############----------############# ###############------------############# ##############--------------############ ##############----------------############ ##########------------------########### T #########--------------------########## ########----------------------######### ##########----------------------######## #########------------------------####### ########----------- ----------###### #######----------- P ----------##### ######----------- ----------#### ####------------------------## ###-----------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -1.89e+22 1.49e+22 4.00e+21 1.49e+22 -1.17e+22 -1.27e+21 4.00e+21 -1.27e+21 3.06e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151223064607/index.html |
STK = 210 DIP = 60 RAKE = -45 MW = 4.26 HS = 11.0
The NDK file is 20151223064607.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/12/23 06:46:07:0 39.43 -119.78 9.7 4.4 Nevada Stations used: BK.SAO BK.WDC CI.GSC CI.ISA CI.OSI IM.NV31 IW.MFID NC.KEB NC.KHMB NC.KMR NN.COLR NN.CTC NN.EMB NN.GWY NN.KVN NN.LCH NN.LHV NN.MPK NN.PAH NN.PNT NN.PRN NN.QSM NN.RUB NN.RYN NN.SHP NN.SPR3 NN.VCN NN.YER TA.R11A UO.PINE US.TPNV US.WVOR UW.IRON Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.09e+22 dyne-cm Mw = 4.26 Z = 11 km Plane Strike Dip Rake NP1 210 60 -45 NP2 327 52 -141 Principal Axes: Axis Value Plunge Azimuth T 3.09e+22 5 270 N 0.00e+00 38 3 P -3.09e+22 52 174 Moment Tensor: (dyne-cm) Component Value Mxx -1.17e+22 Mxy 1.27e+21 Mxz 1.49e+22 Myy 3.06e+22 Myz -4.00e+21 Mzz -1.89e+22 -------------- --------------------## ##########---------######### ##############---############# #################--############### ################------############## ###############----------############# ###############------------############# ##############--------------############ ##############----------------############ ##########------------------########### T #########--------------------########## ########----------------------######### ##########----------------------######## #########------------------------####### ########----------- ----------###### #######----------- P ----------##### ######----------- ----------#### ####------------------------## ###-----------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -1.89e+22 1.49e+22 4.00e+21 1.49e+22 -1.17e+22 -1.27e+21 4.00e+21 -1.27e+21 3.06e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151223064607/index.html |
Regional Moment Tensor (Mwr) Moment 3.780e+15 N-m Magnitude 4.32 Depth 10.0 km Percent DC 94% Half Duration – Catalog US (us100048zm) Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 338 42 -119 NP2 195 54 -66 Principal Axes Axis Value Plunge Azimuth T 3.835 6 269 N -0.112 19 1 P -3.723 70 162 |
Mw Moment 3.504e+15 N-m Magnitude 4.30 Depth 8.0 km Percent DC 99% Half Duration – Catalog NN (nn00523696) Data Source NN1 Contributor NN1 Nodal Planes Plane Strike Dip Rake NP1 349 41 -112 NP2 197 53 -72 Principal Axes Axis Value Plunge Azimuth T 3.513 6 274 N -0.017 14 6 P -3.496 74 161 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 15 45 -75 3.87 0.3105 WVFGRD96 2.0 200 45 -65 4.02 0.4444 WVFGRD96 3.0 220 60 20 4.00 0.4811 WVFGRD96 4.0 210 65 -45 4.08 0.5332 WVFGRD96 5.0 210 65 -45 4.11 0.5962 WVFGRD96 6.0 210 65 -40 4.13 0.6446 WVFGRD96 7.0 210 65 -40 4.15 0.6817 WVFGRD96 8.0 205 60 -50 4.22 0.7146 WVFGRD96 9.0 205 60 -50 4.24 0.7379 WVFGRD96 10.0 205 60 -50 4.25 0.7483 WVFGRD96 11.0 210 60 -45 4.26 0.7507 WVFGRD96 12.0 210 60 -45 4.27 0.7472 WVFGRD96 13.0 210 60 -45 4.28 0.7384 WVFGRD96 14.0 215 65 -35 4.29 0.7282 WVFGRD96 15.0 215 65 -35 4.30 0.7153 WVFGRD96 16.0 215 65 -35 4.31 0.6994 WVFGRD96 17.0 215 65 -35 4.32 0.6836 WVFGRD96 18.0 220 65 -30 4.32 0.6659 WVFGRD96 19.0 220 65 -30 4.33 0.6499 WVFGRD96 20.0 220 65 -30 4.34 0.6331 WVFGRD96 21.0 220 65 -30 4.35 0.6178 WVFGRD96 22.0 220 65 -30 4.36 0.6018 WVFGRD96 23.0 220 65 -30 4.36 0.5860 WVFGRD96 24.0 225 65 -25 4.37 0.5721 WVFGRD96 25.0 225 65 -25 4.38 0.5601 WVFGRD96 26.0 225 60 -25 4.38 0.5496 WVFGRD96 27.0 225 60 -25 4.39 0.5408 WVFGRD96 28.0 225 60 -25 4.40 0.5322 WVFGRD96 29.0 225 60 -20 4.40 0.5252
The best solution is
WVFGRD96 11.0 210 60 -45 4.26 0.7507
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00