The ANSS event ID is ak015ffuk2jn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak015ffuk2jn/executive.
2015/12/02 10:05:25 61.697 -147.262 36.6 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2015/12/02 10:05:25:0 61.70 -147.26 36.6 4.5 Alaska
Stations used:
AK.BPAW AK.CAST AK.CUT AK.DHY AK.FID AK.FIRE AK.GHO AK.GLB
AK.GLI AK.ISLE AK.KLU AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM
AK.MLY AK.NEA2 AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW
AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MID AT.PMR IM.IL31
TA.J20K TA.L19K TA.L26K TA.L27K TA.M24K TA.M26K TA.M27K
TA.N25K TA.O19K TA.O22K TA.Q23K TA.TCOL
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 48 km
Plane Strike Dip Rake
NP1 65 85 10
NP2 334 80 175
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 11 290
N 0.00e+00 79 91
P -7.59e+22 3 199
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.89e+22
Mxy -4.70e+22
Mxz 9.01e+21
Myy 5.66e+22
Myz -1.14e+22
Mzz 2.29e+21
--------------
###-------------------
########--------------------
##########--------------------
#############---------------------
###############---------------------
##############--------------------#
# T ################---------------#####
# #################-----------########
######################--------############
#######################---################
######################--##################
##################-------#################
#############------------###############
########------------------##############
##-----------------------#############
-------------------------###########
-------------------------#########
-----------------------#######
-----------------------#####
--- --------------##
P ------------
Global CMT Convention Moment Tensor:
R T P
2.29e+21 9.01e+21 1.14e+22
9.01e+21 -5.89e+22 4.70e+22
1.14e+22 4.70e+22 5.66e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151202100525/index.html
|
STK = 65
DIP = 85
RAKE = 10
MW = 4.52
HS = 48.0
The NDK file is 20151202100525.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2015/12/02 10:05:25:0 61.70 -147.26 36.6 4.5 Alaska
Stations used:
AK.BPAW AK.CAST AK.CUT AK.DHY AK.FID AK.FIRE AK.GHO AK.GLB
AK.GLI AK.ISLE AK.KLU AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM
AK.MLY AK.NEA2 AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW
AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MID AT.PMR IM.IL31
TA.J20K TA.L19K TA.L26K TA.L27K TA.M24K TA.M26K TA.M27K
TA.N25K TA.O19K TA.O22K TA.Q23K TA.TCOL
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 48 km
Plane Strike Dip Rake
NP1 65 85 10
NP2 334 80 175
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 11 290
N 0.00e+00 79 91
P -7.59e+22 3 199
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.89e+22
Mxy -4.70e+22
Mxz 9.01e+21
Myy 5.66e+22
Myz -1.14e+22
Mzz 2.29e+21
--------------
###-------------------
########--------------------
##########--------------------
#############---------------------
###############---------------------
##############--------------------#
# T ################---------------#####
# #################-----------########
######################--------############
#######################---################
######################--##################
##################-------#################
#############------------###############
########------------------##############
##-----------------------#############
-------------------------###########
-------------------------#########
-----------------------#######
-----------------------#####
--- --------------##
P ------------
Global CMT Convention Moment Tensor:
R T P
2.29e+21 9.01e+21 1.14e+22
9.01e+21 -5.89e+22 4.70e+22
1.14e+22 4.70e+22 5.66e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151202100525/index.html
|
Regional Moment Tensor (Mwr) Moment 8.224e+15 N-m Magnitude 4.54 Depth 48.0 km Percent DC 69% Half Duration – Catalog US (us100042ng) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 337 80 -180 NP2 247 90 -10 Principal Axes Axis Value Plunge Azimuth T 8.824 7 292 N -1.372 80 67 P -7.452 7 201 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 65 90 0 3.86 0.3305
WVFGRD96 4.0 65 85 -5 3.95 0.3992
WVFGRD96 6.0 65 85 -5 4.02 0.4443
WVFGRD96 8.0 65 85 -5 4.07 0.4838
WVFGRD96 10.0 65 85 -10 4.11 0.4992
WVFGRD96 12.0 70 75 10 4.13 0.5071
WVFGRD96 14.0 70 75 10 4.16 0.5195
WVFGRD96 16.0 70 80 10 4.18 0.5300
WVFGRD96 18.0 70 80 10 4.20 0.5396
WVFGRD96 20.0 70 80 10 4.22 0.5483
WVFGRD96 22.0 70 80 15 4.24 0.5571
WVFGRD96 24.0 70 80 15 4.26 0.5679
WVFGRD96 26.0 70 80 10 4.27 0.5787
WVFGRD96 28.0 70 80 10 4.29 0.5890
WVFGRD96 30.0 70 80 10 4.31 0.5975
WVFGRD96 32.0 70 85 10 4.33 0.6034
WVFGRD96 34.0 65 85 10 4.36 0.6080
WVFGRD96 36.0 65 85 5 4.38 0.6154
WVFGRD96 38.0 65 85 5 4.41 0.6233
WVFGRD96 40.0 65 85 10 4.45 0.6295
WVFGRD96 42.0 65 85 10 4.47 0.6336
WVFGRD96 44.0 65 85 10 4.49 0.6363
WVFGRD96 46.0 65 85 10 4.51 0.6369
WVFGRD96 48.0 65 85 10 4.52 0.6376
WVFGRD96 50.0 65 85 10 4.53 0.6365
WVFGRD96 52.0 65 85 10 4.55 0.6351
WVFGRD96 54.0 245 90 -10 4.56 0.6312
WVFGRD96 56.0 245 90 -10 4.57 0.6292
WVFGRD96 58.0 65 85 10 4.58 0.6278
WVFGRD96 60.0 245 90 -10 4.59 0.6232
WVFGRD96 62.0 65 85 10 4.59 0.6207
WVFGRD96 64.0 65 85 10 4.60 0.6171
WVFGRD96 66.0 65 85 10 4.61 0.6136
WVFGRD96 68.0 65 85 10 4.61 0.6097
WVFGRD96 70.0 65 85 10 4.62 0.6053
WVFGRD96 72.0 65 85 10 4.62 0.6004
WVFGRD96 74.0 65 85 10 4.63 0.5959
WVFGRD96 76.0 65 85 5 4.63 0.5913
WVFGRD96 78.0 65 85 5 4.63 0.5870
WVFGRD96 80.0 65 85 5 4.64 0.5824
WVFGRD96 82.0 65 85 5 4.64 0.5782
WVFGRD96 84.0 65 85 5 4.64 0.5737
WVFGRD96 86.0 65 85 5 4.65 0.5698
WVFGRD96 88.0 65 85 5 4.65 0.5655
WVFGRD96 90.0 65 85 5 4.65 0.5616
WVFGRD96 92.0 65 85 5 4.66 0.5578
WVFGRD96 94.0 70 80 10 4.66 0.5545
WVFGRD96 96.0 70 80 10 4.66 0.5513
WVFGRD96 98.0 70 80 10 4.66 0.5479
The best solution is
WVFGRD96 48.0 65 85 10 4.52 0.6376
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00