The ANSS event ID is us10003vin and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us10003vin/executive.
2015/11/07 11:11:54 36.953 -97.855 5.0 4.1 Oklahoma
USGS/SLU Moment Tensor Solution ENS 2015/11/07 11:11:54:0 36.95 -97.86 5.0 4.1 Oklahoma Stations used: AG.HHAR GS.KAN01 GS.KAN08 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN16 GS.KAN17 GS.KS20 GS.KS21 GS.OK025 GS.OK029 GS.OK030 GS.OK031 GS.OK032 N4.N33B N4.R32B N4.T35B N4.U38B N4.Z35B OK.BCOK OK.BLOK OK.CCOK OK.CHOK OK.CROK OK.FNO OK.OKCFA OK.U32A OK.X37A TA.KSCO TA.TUL1 TA.U40A TA.W39A US.CBKS US.KSU1 US.MIAR US.WMOK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 8 km Plane Strike Dip Rake NP1 90 65 -55 NP2 211 42 -141 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 13 155 N 0.00e+00 31 254 P -2.34e+22 55 46 Moment Tensor: (dyne-cm) Component Value Mxx 1.47e+22 Mxy -1.22e+22 Mxz -1.23e+22 Myy -1.07e+15 Myz -5.68e+21 Mzz -1.47e+22 ############## ################------ ##############-------------- ############------------------ ############---------------------- ###########------------------------- ##########-------------- ----------- ##########--------------- P ------------ #########---------------- ------------ #########--------------------------------- ########---------------------------------- -#######---------------------------------# ----###-------------------------------#### ------##------------------------######## ------################################## -----################################# ----################################ ----############################## --################### ###### --################## T ##### ################# ## ############## Global CMT Convention Moment Tensor: R T P -1.47e+22 -1.23e+22 5.68e+21 -1.23e+22 1.47e+22 1.22e+22 5.68e+21 1.22e+22 -1.07e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151107111154/index.html |
STK = 90 DIP = 65 RAKE = -55 MW = 4.18 HS = 8.0
The NDK file is 20151107111154.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/11/07 11:11:54:0 36.95 -97.86 5.0 4.1 Oklahoma Stations used: AG.HHAR GS.KAN01 GS.KAN08 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN16 GS.KAN17 GS.KS20 GS.KS21 GS.OK025 GS.OK029 GS.OK030 GS.OK031 GS.OK032 N4.N33B N4.R32B N4.T35B N4.U38B N4.Z35B OK.BCOK OK.BLOK OK.CCOK OK.CHOK OK.CROK OK.FNO OK.OKCFA OK.U32A OK.X37A TA.KSCO TA.TUL1 TA.U40A TA.W39A US.CBKS US.KSU1 US.MIAR US.WMOK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 8 km Plane Strike Dip Rake NP1 90 65 -55 NP2 211 42 -141 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 13 155 N 0.00e+00 31 254 P -2.34e+22 55 46 Moment Tensor: (dyne-cm) Component Value Mxx 1.47e+22 Mxy -1.22e+22 Mxz -1.23e+22 Myy -1.07e+15 Myz -5.68e+21 Mzz -1.47e+22 ############## ################------ ##############-------------- ############------------------ ############---------------------- ###########------------------------- ##########-------------- ----------- ##########--------------- P ------------ #########---------------- ------------ #########--------------------------------- ########---------------------------------- -#######---------------------------------# ----###-------------------------------#### ------##------------------------######## ------################################## -----################################# ----################################ ----############################## --################### ###### --################## T ##### ################# ## ############## Global CMT Convention Moment Tensor: R T P -1.47e+22 -1.23e+22 5.68e+21 -1.23e+22 1.47e+22 1.22e+22 5.68e+21 1.22e+22 -1.07e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151107111154/index.html |
Regional Moment Tensor (Mwr) Moment 1.648e+15 N-m Magnitude 4.08 Depth 3.0 km Percent DC 67% Half Duration – Catalog US (us10003vin) Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 94 60 -51 NP2 215 48 -138 Principal Axes Axis Value Plunge Azimuth T 1.776 7 157 N -0.295 33 252 P -1.480 56 57 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 95 70 -55 3.89 0.3032 WVFGRD96 2.0 95 75 -65 4.07 0.3806 WVFGRD96 3.0 90 65 -60 4.08 0.4432 WVFGRD96 4.0 90 65 -60 4.11 0.4609 WVFGRD96 5.0 90 65 -60 4.12 0.4724 WVFGRD96 6.0 90 65 -55 4.12 0.4733 WVFGRD96 7.0 95 65 -50 4.13 0.4673 WVFGRD96 8.0 90 65 -55 4.18 0.4820 WVFGRD96 9.0 95 70 -50 4.17 0.4583 WVFGRD96 10.0 290 85 30 4.16 0.4399 WVFGRD96 11.0 290 85 30 4.16 0.4280 WVFGRD96 12.0 295 70 30 4.17 0.4219 WVFGRD96 13.0 295 65 35 4.18 0.4186 WVFGRD96 14.0 295 60 35 4.20 0.4147 WVFGRD96 15.0 295 60 35 4.20 0.4109 WVFGRD96 16.0 295 65 30 4.20 0.4062 WVFGRD96 17.0 295 65 30 4.20 0.4026 WVFGRD96 18.0 295 65 35 4.21 0.3986 WVFGRD96 19.0 295 65 35 4.21 0.3948 WVFGRD96 20.0 295 65 35 4.22 0.3909 WVFGRD96 21.0 295 65 35 4.23 0.3863 WVFGRD96 22.0 295 65 35 4.23 0.3816 WVFGRD96 23.0 295 65 35 4.24 0.3761 WVFGRD96 24.0 295 65 35 4.24 0.3709 WVFGRD96 25.0 290 75 30 4.24 0.3672 WVFGRD96 26.0 290 80 30 4.25 0.3649 WVFGRD96 27.0 290 80 30 4.26 0.3638 WVFGRD96 28.0 290 75 30 4.27 0.3626 WVFGRD96 29.0 290 75 30 4.27 0.3622
The best solution is
WVFGRD96 8.0 90 65 -55 4.18 0.4820
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00