The ANSS event ID is ak015ddcgft7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak015ddcgft7/executive.
2015/10/18 05:15:30 62.776 -149.275 66.7 4.1 Kansas
USGS/SLU Moment Tensor Solution ENS 2015/10/18 05:15:30:0 62.78 -149.27 66.7 4.1 Kansas Stations used: AK.BPAW AK.BWN AK.CCB AK.DHY AK.DOT AK.GHO AK.GLI AK.HDA AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.TRF AK.WRH AT.PMR IU.COLA TA.K20K TA.N25K TA.TCOL Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 76 km Plane Strike Dip Rake NP1 140 80 45 NP2 40 46 166 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 38 11 N 0.00e+00 44 150 P -1.78e+22 22 263 Moment Tensor: (dyne-cm) Component Value Mxx 1.04e+22 Mxy 3.27e+19 Mxz 9.27e+21 Myy -1.47e+22 Myz 7.65e+21 Mzz 4.30e+21 ############## ###################### -##########################- ---############# ##########- -----############# T ##########--- -------############ ###########--- ----------########################---- ------------#######################----- -------------#####################------ ----------------###################------- -----------------#################-------- --- ------------###############--------- --- P --------------############---------- -- ----------------#########---------- ----------------------#######----------- -----------------------###------------ -----------------------#------------ --------------------#####--------- ---------------##########----- ---------##################- ###################### ############## Global CMT Convention Moment Tensor: R T P 4.30e+21 9.27e+21 -7.65e+21 9.27e+21 1.04e+22 -3.27e+19 -7.65e+21 -3.27e+19 -1.47e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151018051530/index.html |
STK = 140 DIP = 80 RAKE = 45 MW = 4.10 HS = 76.0
The NDK file is 20151018051530.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 260 50 60 3.16 0.1735 WVFGRD96 4.0 240 60 30 3.22 0.1960 WVFGRD96 6.0 50 70 -35 3.28 0.2267 WVFGRD96 8.0 225 60 -30 3.37 0.2512 WVFGRD96 10.0 245 70 40 3.42 0.2710 WVFGRD96 12.0 240 60 35 3.47 0.2876 WVFGRD96 14.0 240 60 35 3.50 0.2910 WVFGRD96 16.0 340 55 40 3.53 0.2836 WVFGRD96 18.0 340 55 40 3.57 0.2910 WVFGRD96 20.0 335 60 40 3.60 0.3006 WVFGRD96 22.0 335 60 40 3.64 0.3132 WVFGRD96 24.0 335 60 40 3.66 0.3259 WVFGRD96 26.0 335 60 40 3.68 0.3347 WVFGRD96 28.0 335 60 40 3.70 0.3390 WVFGRD96 30.0 335 60 40 3.71 0.3374 WVFGRD96 32.0 335 60 40 3.72 0.3292 WVFGRD96 34.0 135 70 -25 3.70 0.3298 WVFGRD96 36.0 135 65 -15 3.73 0.3358 WVFGRD96 38.0 135 60 -10 3.76 0.3471 WVFGRD96 40.0 135 50 -15 3.84 0.3640 WVFGRD96 42.0 315 75 -50 3.88 0.3668 WVFGRD96 44.0 140 90 50 3.93 0.3759 WVFGRD96 46.0 140 90 50 3.95 0.3945 WVFGRD96 48.0 140 90 50 3.97 0.4126 WVFGRD96 50.0 320 90 -50 3.98 0.4313 WVFGRD96 52.0 320 90 -50 4.00 0.4519 WVFGRD96 54.0 320 90 -55 4.02 0.4717 WVFGRD96 56.0 140 90 55 4.03 0.4891 WVFGRD96 58.0 140 85 50 4.04 0.5064 WVFGRD96 60.0 140 85 50 4.05 0.5213 WVFGRD96 62.0 140 85 50 4.06 0.5360 WVFGRD96 64.0 140 80 45 4.07 0.5473 WVFGRD96 66.0 140 80 50 4.09 0.5580 WVFGRD96 68.0 140 80 50 4.09 0.5657 WVFGRD96 70.0 140 80 50 4.10 0.5725 WVFGRD96 72.0 140 80 45 4.09 0.5749 WVFGRD96 74.0 140 80 45 4.10 0.5793 WVFGRD96 76.0 140 80 45 4.10 0.5802 WVFGRD96 78.0 140 80 45 4.10 0.5795 WVFGRD96 80.0 140 80 45 4.11 0.5791 WVFGRD96 82.0 145 70 40 4.12 0.5779 WVFGRD96 84.0 145 70 40 4.12 0.5764 WVFGRD96 86.0 145 70 40 4.12 0.5731 WVFGRD96 88.0 145 70 40 4.12 0.5704 WVFGRD96 90.0 145 65 40 4.14 0.5688 WVFGRD96 92.0 145 65 40 4.14 0.5673 WVFGRD96 94.0 145 65 40 4.14 0.5660 WVFGRD96 96.0 145 65 40 4.15 0.5643 WVFGRD96 98.0 145 65 40 4.15 0.5615 WVFGRD96 100.0 145 65 40 4.15 0.5581 WVFGRD96 102.0 145 65 40 4.15 0.5546 WVFGRD96 104.0 145 65 40 4.15 0.5503 WVFGRD96 106.0 145 65 40 4.15 0.5453 WVFGRD96 108.0 145 65 40 4.15 0.5404 WVFGRD96 110.0 145 65 40 4.16 0.5357 WVFGRD96 112.0 145 65 40 4.16 0.5307 WVFGRD96 114.0 145 65 35 4.15 0.5255 WVFGRD96 116.0 145 65 35 4.15 0.5194 WVFGRD96 118.0 310 85 -30 4.10 0.5142 WVFGRD96 2.0 260 50 60 3.16 0.1799 WVFGRD96 4.0 240 60 30 3.22 0.2024 WVFGRD96 6.0 50 70 -35 3.28 0.2339 WVFGRD96 8.0 225 60 -30 3.37 0.2592 WVFGRD96 10.0 245 70 40 3.42 0.2798 WVFGRD96 12.0 240 60 35 3.47 0.2971 WVFGRD96 14.0 240 60 35 3.50 0.3006 WVFGRD96 16.0 340 55 40 3.53 0.2929 WVFGRD96 18.0 340 55 40 3.57 0.3005 WVFGRD96 20.0 335 60 40 3.60 0.3104 WVFGRD96 22.0 335 60 40 3.64 0.3236 WVFGRD96 24.0 335 60 40 3.66 0.3367 WVFGRD96 26.0 335 60 40 3.68 0.3459 WVFGRD96 28.0 335 60 40 3.70 0.3503 WVFGRD96 30.0 335 60 40 3.71 0.3487 WVFGRD96 32.0 335 60 40 3.72 0.3402 WVFGRD96 34.0 135 70 -25 3.70 0.3401 WVFGRD96 36.0 135 65 -15 3.73 0.3462 WVFGRD96 38.0 135 60 -10 3.76 0.3578 WVFGRD96 40.0 135 50 -15 3.84 0.3753 WVFGRD96 42.0 315 75 -50 3.88 0.3781 WVFGRD96 44.0 140 90 50 3.92 0.3875 WVFGRD96 46.0 140 90 50 3.95 0.4067 WVFGRD96 48.0 140 90 50 3.97 0.4253 WVFGRD96 50.0 140 90 50 3.98 0.4446 WVFGRD96 52.0 320 90 -50 4.00 0.4659 WVFGRD96 54.0 140 90 55 4.02 0.4863 WVFGRD96 56.0 140 90 55 4.03 0.5043 WVFGRD96 58.0 140 85 50 4.04 0.5222 WVFGRD96 60.0 140 85 50 4.05 0.5377 WVFGRD96 62.0 140 85 50 4.06 0.5528 WVFGRD96 64.0 140 80 45 4.07 0.5646 WVFGRD96 66.0 140 80 50 4.09 0.5756 WVFGRD96 68.0 140 80 50 4.09 0.5836 WVFGRD96 70.0 140 80 50 4.10 0.5906 WVFGRD96 72.0 140 80 45 4.09 0.5931 WVFGRD96 74.0 140 80 45 4.10 0.5977 WVFGRD96 76.0 140 80 45 4.10 0.5984 WVFGRD96 78.0 140 80 45 4.10 0.5977 WVFGRD96 80.0 140 80 45 4.11 0.5974 WVFGRD96 82.0 145 70 40 4.12 0.5961 WVFGRD96 84.0 145 70 40 4.12 0.5947 WVFGRD96 86.0 145 70 40 4.12 0.5912 WVFGRD96 88.0 145 70 40 4.12 0.5885 WVFGRD96 90.0 145 65 40 4.14 0.5868 WVFGRD96 92.0 145 65 40 4.14 0.5853 WVFGRD96 94.0 145 65 40 4.14 0.5840 WVFGRD96 96.0 145 65 40 4.15 0.5822 WVFGRD96 98.0 145 65 40 4.15 0.5794 WVFGRD96 100.0 145 65 40 4.15 0.5759 WVFGRD96 102.0 145 65 40 4.15 0.5723 WVFGRD96 104.0 145 65 40 4.15 0.5679 WVFGRD96 106.0 145 65 40 4.15 0.5627 WVFGRD96 108.0 145 65 40 4.15 0.5577 WVFGRD96 110.0 145 65 40 4.16 0.5528 WVFGRD96 112.0 145 65 40 4.16 0.5477 WVFGRD96 114.0 145 65 35 4.15 0.5422 WVFGRD96 116.0 145 65 35 4.15 0.5360 WVFGRD96 118.0 310 85 -30 4.10 0.5306 WVFGRD96 2.0 260 50 60 3.16 0.1799 WVFGRD96 4.0 240 60 30 3.22 0.2024 WVFGRD96 6.0 50 70 -35 3.28 0.2339 WVFGRD96 8.0 225 60 -30 3.37 0.2592 WVFGRD96 10.0 245 70 40 3.42 0.2798 WVFGRD96 12.0 240 60 35 3.47 0.2971 WVFGRD96 14.0 240 60 35 3.50 0.3006 WVFGRD96 16.0 340 55 40 3.53 0.2929 WVFGRD96 18.0 340 55 40 3.57 0.3005 WVFGRD96 20.0 335 60 40 3.60 0.3104 WVFGRD96 22.0 335 60 40 3.64 0.3236 WVFGRD96 24.0 335 60 40 3.66 0.3367 WVFGRD96 26.0 335 60 40 3.68 0.3459 WVFGRD96 28.0 335 60 40 3.70 0.3503 WVFGRD96 30.0 335 60 40 3.71 0.3487 WVFGRD96 32.0 335 60 40 3.72 0.3402 WVFGRD96 34.0 135 70 -25 3.70 0.3401 WVFGRD96 36.0 135 65 -15 3.73 0.3462 WVFGRD96 38.0 135 60 -10 3.76 0.3578 WVFGRD96 40.0 135 50 -15 3.84 0.3753 WVFGRD96 42.0 315 75 -50 3.88 0.3781 WVFGRD96 44.0 140 90 50 3.92 0.3875 WVFGRD96 46.0 140 90 50 3.95 0.4067 WVFGRD96 48.0 140 90 50 3.97 0.4253 WVFGRD96 50.0 140 90 50 3.98 0.4446 WVFGRD96 52.0 320 90 -50 4.00 0.4659 WVFGRD96 54.0 140 90 55 4.02 0.4863 WVFGRD96 56.0 140 90 55 4.03 0.5043 WVFGRD96 58.0 140 85 50 4.04 0.5222 WVFGRD96 60.0 140 85 50 4.05 0.5377 WVFGRD96 62.0 140 85 50 4.06 0.5528 WVFGRD96 64.0 140 80 45 4.07 0.5646 WVFGRD96 66.0 140 80 50 4.09 0.5756 WVFGRD96 68.0 140 80 50 4.09 0.5836 WVFGRD96 70.0 140 80 50 4.10 0.5906 WVFGRD96 72.0 140 80 45 4.09 0.5931 WVFGRD96 74.0 140 80 45 4.10 0.5977 WVFGRD96 76.0 140 80 45 4.10 0.5984 WVFGRD96 78.0 140 80 45 4.10 0.5977 WVFGRD96 80.0 140 80 45 4.11 0.5974 WVFGRD96 82.0 145 70 40 4.12 0.5961 WVFGRD96 84.0 145 70 40 4.12 0.5947 WVFGRD96 86.0 145 70 40 4.12 0.5912 WVFGRD96 88.0 145 70 40 4.12 0.5885 WVFGRD96 90.0 145 65 40 4.14 0.5868 WVFGRD96 92.0 145 65 40 4.14 0.5853 WVFGRD96 94.0 145 65 40 4.14 0.5840 WVFGRD96 96.0 145 65 40 4.15 0.5822 WVFGRD96 98.0 145 65 40 4.15 0.5794 WVFGRD96 100.0 145 65 40 4.15 0.5759 WVFGRD96 102.0 145 65 40 4.15 0.5723 WVFGRD96 104.0 145 65 40 4.15 0.5679 WVFGRD96 106.0 145 65 40 4.15 0.5627 WVFGRD96 108.0 145 65 40 4.15 0.5577 WVFGRD96 110.0 145 65 40 4.16 0.5528 WVFGRD96 112.0 145 65 40 4.16 0.5477 WVFGRD96 114.0 145 65 35 4.15 0.5422 WVFGRD96 116.0 145 65 35 4.15 0.5360 WVFGRD96 118.0 310 85 -30 4.10 0.5306 WVFGRD96 2.0 260 50 60 3.16 0.1799 WVFGRD96 4.0 240 60 30 3.22 0.2024 WVFGRD96 6.0 50 70 -35 3.28 0.2339 WVFGRD96 8.0 225 60 -30 3.37 0.2592 WVFGRD96 10.0 245 70 40 3.42 0.2798 WVFGRD96 12.0 240 60 35 3.47 0.2971 WVFGRD96 14.0 240 60 35 3.50 0.3006 WVFGRD96 16.0 340 55 40 3.53 0.2929 WVFGRD96 18.0 340 55 40 3.57 0.3005 WVFGRD96 20.0 335 60 40 3.60 0.3104 WVFGRD96 22.0 335 60 40 3.64 0.3236 WVFGRD96 24.0 335 60 40 3.66 0.3367 WVFGRD96 26.0 335 60 40 3.68 0.3459 WVFGRD96 28.0 335 60 40 3.70 0.3503 WVFGRD96 30.0 335 60 40 3.71 0.3487 WVFGRD96 32.0 335 60 40 3.72 0.3402 WVFGRD96 34.0 135 70 -25 3.70 0.3401 WVFGRD96 36.0 135 65 -15 3.73 0.3462 WVFGRD96 38.0 135 60 -10 3.76 0.3578 WVFGRD96 40.0 135 50 -15 3.84 0.3753 WVFGRD96 42.0 315 75 -50 3.88 0.3781 WVFGRD96 44.0 140 90 50 3.92 0.3875 WVFGRD96 46.0 140 90 50 3.95 0.4067 WVFGRD96 48.0 140 90 50 3.97 0.4253 WVFGRD96 50.0 140 90 50 3.98 0.4446 WVFGRD96 52.0 320 90 -50 4.00 0.4659 WVFGRD96 54.0 140 90 55 4.02 0.4863 WVFGRD96 56.0 140 90 55 4.03 0.5043 WVFGRD96 58.0 140 85 50 4.04 0.5222 WVFGRD96 60.0 140 85 50 4.05 0.5377 WVFGRD96 62.0 140 85 50 4.06 0.5528 WVFGRD96 64.0 140 80 45 4.07 0.5646 WVFGRD96 66.0 140 80 50 4.09 0.5756 WVFGRD96 68.0 140 80 50 4.09 0.5836 WVFGRD96 70.0 140 80 50 4.10 0.5906 WVFGRD96 72.0 140 80 45 4.09 0.5931 WVFGRD96 74.0 140 80 45 4.10 0.5977 WVFGRD96 76.0 140 80 45 4.10 0.5984 WVFGRD96 78.0 140 80 45 4.10 0.5977 WVFGRD96 80.0 140 80 45 4.11 0.5974 WVFGRD96 82.0 145 70 40 4.12 0.5961 WVFGRD96 84.0 145 70 40 4.12 0.5947 WVFGRD96 86.0 145 70 40 4.12 0.5912 WVFGRD96 88.0 145 70 40 4.12 0.5885 WVFGRD96 90.0 145 65 40 4.14 0.5868 WVFGRD96 92.0 145 65 40 4.14 0.5853 WVFGRD96 94.0 145 65 40 4.14 0.5840 WVFGRD96 96.0 145 65 40 4.15 0.5822 WVFGRD96 98.0 145 65 40 4.15 0.5794 WVFGRD96 100.0 145 65 40 4.15 0.5759 WVFGRD96 102.0 145 65 40 4.15 0.5723 WVFGRD96 104.0 145 65 40 4.15 0.5679 WVFGRD96 106.0 145 65 40 4.15 0.5627 WVFGRD96 108.0 145 65 40 4.15 0.5577 WVFGRD96 110.0 145 65 40 4.16 0.5528 WVFGRD96 112.0 145 65 40 4.16 0.5477 WVFGRD96 114.0 145 65 35 4.15 0.5422 WVFGRD96 116.0 145 65 35 4.15 0.5360 WVFGRD96 118.0 310 85 -30 4.10 0.5306
The best solution is
WVFGRD96 76.0 140 80 45 4.10 0.5984
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00