Location

Location ANSS

The ANSS event ID is us10003mnu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us10003mnu/executive.

2015/10/10 09:20:43 36.719 -97.931 5.6 4.4 Oklahoma

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/10/10 09:20:43:0  36.72  -97.93   5.6 4.4 Oklahoma
 
 Stations used:
   AG.FCAR AG.WHAR AG.WLAR GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08 
   GS.KAN09 GS.KAN10 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN14 
   GS.KAN16 GS.KAN17 GS.KS20 GS.KS21 GS.OK025 GS.OK029 
   GS.OK030 GS.OK031 GS.OK032 N4.N33B N4.N35B N4.P38B N4.R32B 
   N4.R40B N4.T35B N4.U38B N4.Z35B N4.Z38B NM.MGMO OK.BCOK 
   OK.BLOK OK.CCOK OK.CHOK OK.CROK OK.FNO OK.LOOK OK.OKCFA 
   OK.U32A OK.X34A OK.X37A TA.ABTX TA.BGNE TA.KSCO TA.MSTX 
   TA.TUL1 TA.U40A TA.W39A TA.WHTX TA.X40A US.AMTX US.CBKS 
   US.KSU1 US.MIAR US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 3.94e+22 dyne-cm
  Mw = 4.33 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       95    50   -75
   NP2      252    42   -107
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.94e+22      4     174
    N   0.00e+00     11     265
    P  -3.94e+22     78      66

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.85e+22
       Mxy    -4.43e+21
       Mxz    -6.01e+21
       Myy    -1.07e+21
       Myz    -7.10e+21
       Mzz    -3.74e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##############################          
           ################-----------#######        
          ###########----------------------###       
         #########----------------------------#      
        ########--------------------------------     
        ######----------------------------------     
       #####-----------------   -----------------    
       -###------------------ P -----------------    
       --#-------------------   -----------------    
       --##-------------------------------------#    
        #####---------------------------------##     
        #######-----------------------------####     
         ##########---------------------#######      
          ####################################       
           ##################################        
             ##############################          
              ############################           
                 ###########   ########              
                     ####### T ####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.74e+22  -6.01e+21   7.10e+21 
 -6.01e+21   3.85e+22   4.43e+21 
  7.10e+21   4.43e+21  -1.07e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151010092043/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 95
      DIP = 50
     RAKE = -75
       MW = 4.33
       HS = 3.0

The NDK file is 20151010092043.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/10/10 09:20:43:0  36.72  -97.93   5.6 4.4 Oklahoma
 
 Stations used:
   AG.FCAR AG.WHAR AG.WLAR GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08 
   GS.KAN09 GS.KAN10 GS.KAN11 GS.KAN12 GS.KAN13 GS.KAN14 
   GS.KAN16 GS.KAN17 GS.KS20 GS.KS21 GS.OK025 GS.OK029 
   GS.OK030 GS.OK031 GS.OK032 N4.N33B N4.N35B N4.P38B N4.R32B 
   N4.R40B N4.T35B N4.U38B N4.Z35B N4.Z38B NM.MGMO OK.BCOK 
   OK.BLOK OK.CCOK OK.CHOK OK.CROK OK.FNO OK.LOOK OK.OKCFA 
   OK.U32A OK.X34A OK.X37A TA.ABTX TA.BGNE TA.KSCO TA.MSTX 
   TA.TUL1 TA.U40A TA.W39A TA.WHTX TA.X40A US.AMTX US.CBKS 
   US.KSU1 US.MIAR US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 3.94e+22 dyne-cm
  Mw = 4.33 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       95    50   -75
   NP2      252    42   -107
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.94e+22      4     174
    N   0.00e+00     11     265
    P  -3.94e+22     78      66

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.85e+22
       Mxy    -4.43e+21
       Mxz    -6.01e+21
       Myy    -1.07e+21
       Myz    -7.10e+21
       Mzz    -3.74e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##############################          
           ################-----------#######        
          ###########----------------------###       
         #########----------------------------#      
        ########--------------------------------     
        ######----------------------------------     
       #####-----------------   -----------------    
       -###------------------ P -----------------    
       --#-------------------   -----------------    
       --##-------------------------------------#    
        #####---------------------------------##     
        #######-----------------------------####     
         ##########---------------------#######      
          ####################################       
           ##################################        
             ##############################          
              ############################           
                 ###########   ########              
                     ####### T ####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.74e+22  -6.01e+21   7.10e+21 
 -6.01e+21   3.85e+22   4.43e+21 
  7.10e+21   4.43e+21  -1.07e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20151010092043/index.html
	
Regional Moment Tensor (Mwr)
Moment	4.658e+15 N-m
Magnitude	4.38
Depth	3.0 km
Percent DC	71%
Half Duration	–
Catalog	US (us10003mnu)
Data Source	US1
Contributor	US1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	258	48	-97
NP2	87	43	-83
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.974	3	352
N	-0.716	5	262
P	-4.259	84	111

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   100    50   -70   4.14 0.4905
WVFGRD96    2.0    95    50   -75   4.26 0.6042
WVFGRD96    3.0    95    50   -75   4.33 0.6057
WVFGRD96    4.0   300    55   -35   4.33 0.5029
WVFGRD96    5.0   310    70   -10   4.32 0.4368
WVFGRD96    6.0   130    75    45   4.33 0.4116
WVFGRD96    7.0   130    75    45   4.34 0.4378
WVFGRD96    8.0   130    80    50   4.40 0.4462
WVFGRD96    9.0   130    75    45   4.41 0.4676
WVFGRD96   10.0   130    75    45   4.42 0.4842
WVFGRD96   11.0   130    75    45   4.43 0.4969
WVFGRD96   12.0   130    75    45   4.44 0.5065
WVFGRD96   13.0   130    75    45   4.45 0.5129
WVFGRD96   14.0   130    70    40   4.47 0.5167
WVFGRD96   15.0   130    70    40   4.48 0.5195
WVFGRD96   16.0   130    70    40   4.49 0.5202
WVFGRD96   17.0   130    70    40   4.50 0.5188
WVFGRD96   18.0   130    70    40   4.51 0.5161
WVFGRD96   19.0   135    65    40   4.53 0.5116
WVFGRD96   20.0   135    65    40   4.54 0.5068
WVFGRD96   21.0   135    65    40   4.55 0.4983
WVFGRD96   22.0   135    65    40   4.56 0.4908
WVFGRD96   23.0   135    65    40   4.57 0.4820
WVFGRD96   24.0   135    65    40   4.57 0.4724
WVFGRD96   25.0   135    65    45   4.58 0.4619
WVFGRD96   26.0   135    65    45   4.59 0.4514
WVFGRD96   27.0   130    70    40   4.59 0.4401
WVFGRD96   28.0    50    35    45   4.49 0.4331
WVFGRD96   29.0    55    35    50   4.50 0.4356

The best solution is

WVFGRD96    3.0    95    50   -75   4.33 0.6057

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 11:49:19 PM CDT 2024