The ANSS event ID is ak0159nc9dk8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0159nc9dk8/executive.
2015/07/29 02:35:58 59.894 -153.196 119.3 6.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/07/29 02:35:58:0 59.89 -153.20 119.3 6.4 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CUT AK.EYAK AK.FID AK.GLI AK.HIN AK.KLU AK.KNK AK.KTH AK.MCK AK.PPLA AK.PWL AK.RAG AK.RND AK.SAW AK.SCM AK.SII AK.SKN AK.SSN AK.SWD AK.TRF AT.MID AT.OHAK AT.PMR AT.SVW2 II.KDAK TA.N25K TA.Q23K Filtering commands used: cut o DIST/3.4 -50 o DIST/3.4 +100 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.31e+25 dyne-cm Mw = 6.28 Z = 114 km Plane Strike Dip Rake NP1 321 60 145 NP2 70 60 35 Principal Axes: Axis Value Plunge Azimuth T 3.31e+25 45 285 N 0.00e+00 45 106 P -3.31e+25 0 15 Moment Tensor: (dyne-cm) Component Value Mxx -2.96e+25 Mxy -1.27e+25 Mxz 4.29e+24 Myy 1.32e+25 Myz -1.60e+25 Mzz 1.64e+25 ----------- P --------------- ---- ####------------------------ ##########-------------------- ###############------------------- ##################------------------ ######################---------------- ########################---------------# ######## ###############------------## ######### T ################----------#### ######### ##################------###### ###############################----####### ########################################## ############################---######### ########################--------######## --################--------------###### -------------------------------##### ------------------------------#### ----------------------------## ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.64e+25 4.29e+24 1.60e+25 4.29e+24 -2.96e+25 1.27e+25 1.60e+25 1.27e+25 1.32e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150729023558/index.html |
STK = 70 DIP = 60 RAKE = 35 MW = 6.28 HS = 114.0
The NDK file is 20150729023558.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/07/29 02:35:58:0 59.89 -153.20 119.3 6.4 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CUT AK.EYAK AK.FID AK.GLI AK.HIN AK.KLU AK.KNK AK.KTH AK.MCK AK.PPLA AK.PWL AK.RAG AK.RND AK.SAW AK.SCM AK.SII AK.SKN AK.SSN AK.SWD AK.TRF AT.MID AT.OHAK AT.PMR AT.SVW2 II.KDAK TA.N25K TA.Q23K Filtering commands used: cut o DIST/3.4 -50 o DIST/3.4 +100 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.31e+25 dyne-cm Mw = 6.28 Z = 114 km Plane Strike Dip Rake NP1 321 60 145 NP2 70 60 35 Principal Axes: Axis Value Plunge Azimuth T 3.31e+25 45 285 N 0.00e+00 45 106 P -3.31e+25 0 15 Moment Tensor: (dyne-cm) Component Value Mxx -2.96e+25 Mxy -1.27e+25 Mxz 4.29e+24 Myy 1.32e+25 Myz -1.60e+25 Mzz 1.64e+25 ----------- P --------------- ---- ####------------------------ ##########-------------------- ###############------------------- ##################------------------ ######################---------------- ########################---------------# ######## ###############------------## ######### T ################----------#### ######### ##################------###### ###############################----####### ########################################## ############################---######### ########################--------######## --################--------------###### -------------------------------##### ------------------------------#### ----------------------------## ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.64e+25 4.29e+24 1.60e+25 4.29e+24 -2.96e+25 1.27e+25 1.60e+25 1.27e+25 1.32e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150729023558/index.html |
W-phase Moment Tensor (Mww) Moment 3.391e+18 N-m Magnitude 6.29 Depth 120.5 km Percent DC 83% Half Duration – Catalog US (us2000314u) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 323 63 147 NP2 69 61 31 Principal Axes Axis Value Plunge Azimuth T 3.527 42 285 N -0.292 48 108 P -3.236 1 16 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -50 o DIST/3.4 +100 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 85 -20 5.36 0.1242 WVFGRD96 4.0 330 90 10 5.43 0.1464 WVFGRD96 6.0 150 90 -10 5.48 0.1557 WVFGRD96 8.0 150 85 -15 5.53 0.1611 WVFGRD96 10.0 240 90 -25 5.57 0.1627 WVFGRD96 12.0 65 80 25 5.59 0.1720 WVFGRD96 14.0 65 80 25 5.61 0.1801 WVFGRD96 16.0 65 75 25 5.63 0.1879 WVFGRD96 18.0 65 75 20 5.65 0.1964 WVFGRD96 20.0 65 75 20 5.66 0.2053 WVFGRD96 22.0 65 75 20 5.68 0.2131 WVFGRD96 24.0 65 70 20 5.70 0.2206 WVFGRD96 26.0 65 70 20 5.71 0.2271 WVFGRD96 28.0 65 70 20 5.73 0.2327 WVFGRD96 30.0 65 75 20 5.76 0.2385 WVFGRD96 32.0 65 75 20 5.78 0.2440 WVFGRD96 34.0 65 75 20 5.80 0.2494 WVFGRD96 36.0 65 75 20 5.82 0.2551 WVFGRD96 38.0 65 75 20 5.85 0.2613 WVFGRD96 40.0 65 75 25 5.93 0.2668 WVFGRD96 42.0 65 70 20 5.94 0.2729 WVFGRD96 44.0 65 70 15 5.96 0.2792 WVFGRD96 46.0 65 70 15 5.97 0.2853 WVFGRD96 48.0 65 70 15 5.99 0.2910 WVFGRD96 50.0 65 70 15 6.00 0.2965 WVFGRD96 52.0 65 75 20 6.02 0.3032 WVFGRD96 54.0 65 75 20 6.04 0.3112 WVFGRD96 56.0 65 70 20 6.05 0.3192 WVFGRD96 58.0 65 70 20 6.06 0.3291 WVFGRD96 60.0 65 65 15 6.07 0.3424 WVFGRD96 62.0 65 65 15 6.09 0.3582 WVFGRD96 64.0 65 65 15 6.10 0.3767 WVFGRD96 66.0 65 65 15 6.12 0.3956 WVFGRD96 68.0 65 65 15 6.13 0.4143 WVFGRD96 70.0 65 65 20 6.15 0.4336 WVFGRD96 72.0 65 65 20 6.16 0.4533 WVFGRD96 74.0 65 65 20 6.17 0.4723 WVFGRD96 76.0 65 65 20 6.19 0.4906 WVFGRD96 78.0 65 65 20 6.20 0.5077 WVFGRD96 80.0 65 65 20 6.21 0.5246 WVFGRD96 82.0 65 65 25 6.21 0.5407 WVFGRD96 84.0 65 65 25 6.22 0.5560 WVFGRD96 86.0 65 65 25 6.23 0.5698 WVFGRD96 88.0 65 65 25 6.24 0.5824 WVFGRD96 90.0 70 60 30 6.24 0.5946 WVFGRD96 92.0 70 60 30 6.24 0.6058 WVFGRD96 94.0 70 60 30 6.25 0.6159 WVFGRD96 96.0 70 60 30 6.26 0.6245 WVFGRD96 98.0 70 60 30 6.26 0.6319 WVFGRD96 100.0 70 60 30 6.27 0.6383 WVFGRD96 102.0 70 60 30 6.27 0.6433 WVFGRD96 104.0 70 60 30 6.27 0.6475 WVFGRD96 106.0 70 60 35 6.27 0.6511 WVFGRD96 108.0 70 60 35 6.28 0.6539 WVFGRD96 110.0 70 60 35 6.28 0.6557 WVFGRD96 112.0 70 60 35 6.28 0.6566 WVFGRD96 114.0 70 60 35 6.28 0.6567 WVFGRD96 116.0 70 60 35 6.29 0.6560 WVFGRD96 118.0 70 60 35 6.29 0.6546 WVFGRD96 120.0 70 60 35 6.29 0.6527 WVFGRD96 122.0 70 60 40 6.29 0.6503 WVFGRD96 124.0 70 60 40 6.29 0.6477 WVFGRD96 126.0 70 60 40 6.29 0.6449 WVFGRD96 128.0 70 60 40 6.29 0.6411
The best solution is
WVFGRD96 114.0 70 60 35 6.28 0.6567
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -50 o DIST/3.4 +100 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00