The ANSS event ID is ak0159h0d1de and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0159h0d1de/executive.
2015/07/25 19:57:43 61.949 -152.052 125.6 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/07/25 19:57:43:0 61.95 -152.05 125.6 5.1 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CAPN AK.CCB AK.CNP AK.EYAK AK.FID AK.FIRE AK.GLB AK.GLI AK.HDA AK.HIN AK.HOM AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.SUCK AK.SWD AK.TRF AK.VRDI AK.WRH AT.PMR IM.IL31 IU.COLA TA.I23K TA.L27K TA.M24K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.43e+23 dyne-cm Mw = 5.09 Z = 124 km Plane Strike Dip Rake NP1 339 67 153 NP2 80 65 25 Principal Axes: Axis Value Plunge Azimuth T 5.43e+23 35 299 N 0.00e+00 55 122 P -5.43e+23 2 30 Moment Tensor: (dyne-cm) Component Value Mxx -3.23e+23 Mxy -3.89e+23 Mxz 1.09e+23 Myy 1.47e+23 Myz -2.31e+23 Mzz 1.76e+23 -------------- ######-------------- P ###########------------ -- ##############---------------- #################----------------- ###################----------------- ###### ############----------------- ####### T #############----------------- ####### ##############---------------- ##########################---------------# ###########################------------### ###########################---------###### ############################-----######### -##########################-############ -------#############--------############ ---------------------------########### --------------------------########## -------------------------######### -----------------------####### ----------------------###### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 1.76e+23 1.09e+23 2.31e+23 1.09e+23 -3.23e+23 3.89e+23 2.31e+23 3.89e+23 1.47e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150725195743/index.html |
STK = 80 DIP = 65 RAKE = 25 MW = 5.09 HS = 124.0
The NDK file is 20150725195743.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 65 -30 4.15 0.1099 WVFGRD96 4.0 250 70 25 4.22 0.1297 WVFGRD96 6.0 250 75 15 4.26 0.1411 WVFGRD96 8.0 250 75 20 4.33 0.1530 WVFGRD96 10.0 250 80 -20 4.36 0.1666 WVFGRD96 12.0 250 75 -20 4.39 0.1803 WVFGRD96 14.0 250 75 -15 4.42 0.1924 WVFGRD96 16.0 250 80 -10 4.45 0.2019 WVFGRD96 18.0 250 80 -10 4.48 0.2088 WVFGRD96 20.0 250 80 -5 4.50 0.2136 WVFGRD96 22.0 250 80 -5 4.52 0.2162 WVFGRD96 24.0 250 80 5 4.55 0.2168 WVFGRD96 26.0 250 80 5 4.56 0.2162 WVFGRD96 28.0 250 80 5 4.58 0.2141 WVFGRD96 30.0 250 80 10 4.60 0.2121 WVFGRD96 32.0 250 80 10 4.62 0.2094 WVFGRD96 34.0 250 80 10 4.64 0.2065 WVFGRD96 36.0 250 85 10 4.67 0.2067 WVFGRD96 38.0 70 90 -10 4.71 0.2099 WVFGRD96 40.0 250 85 15 4.77 0.2242 WVFGRD96 42.0 250 85 15 4.79 0.2264 WVFGRD96 44.0 250 90 20 4.81 0.2305 WVFGRD96 46.0 250 90 15 4.83 0.2365 WVFGRD96 48.0 70 90 -15 4.85 0.2431 WVFGRD96 50.0 250 90 15 4.87 0.2502 WVFGRD96 52.0 250 90 15 4.89 0.2584 WVFGRD96 54.0 70 90 -15 4.90 0.2667 WVFGRD96 56.0 250 85 15 4.92 0.2801 WVFGRD96 58.0 250 85 15 4.93 0.2929 WVFGRD96 60.0 250 85 15 4.95 0.3055 WVFGRD96 62.0 250 90 10 4.96 0.3183 WVFGRD96 64.0 250 90 10 4.97 0.3313 WVFGRD96 66.0 70 90 -10 4.98 0.3437 WVFGRD96 68.0 70 85 -5 4.99 0.3557 WVFGRD96 70.0 75 75 5 4.99 0.3695 WVFGRD96 72.0 75 75 5 5.00 0.3820 WVFGRD96 74.0 75 70 10 5.00 0.3914 WVFGRD96 76.0 75 70 10 5.01 0.4012 WVFGRD96 78.0 75 70 10 5.01 0.4092 WVFGRD96 80.0 75 70 10 5.02 0.4175 WVFGRD96 82.0 75 70 10 5.03 0.4244 WVFGRD96 84.0 75 70 10 5.03 0.4318 WVFGRD96 86.0 75 70 15 5.03 0.4389 WVFGRD96 88.0 75 70 15 5.04 0.4452 WVFGRD96 90.0 75 70 15 5.05 0.4519 WVFGRD96 92.0 75 70 15 5.05 0.4574 WVFGRD96 94.0 75 70 15 5.05 0.4620 WVFGRD96 96.0 75 70 15 5.06 0.4669 WVFGRD96 98.0 75 70 15 5.06 0.4710 WVFGRD96 100.0 75 70 15 5.07 0.4747 WVFGRD96 102.0 80 65 20 5.07 0.4783 WVFGRD96 104.0 80 65 20 5.07 0.4817 WVFGRD96 106.0 80 65 20 5.07 0.4848 WVFGRD96 108.0 80 65 20 5.08 0.4879 WVFGRD96 110.0 80 65 20 5.08 0.4905 WVFGRD96 112.0 80 65 20 5.08 0.4925 WVFGRD96 114.0 80 65 20 5.09 0.4939 WVFGRD96 116.0 80 65 20 5.09 0.4948 WVFGRD96 118.0 80 65 25 5.09 0.4955 WVFGRD96 120.0 80 65 25 5.09 0.4964 WVFGRD96 122.0 80 65 25 5.09 0.4971 WVFGRD96 124.0 80 65 25 5.09 0.4971 WVFGRD96 126.0 80 65 25 5.10 0.4968 WVFGRD96 128.0 80 65 25 5.10 0.4957 WVFGRD96 130.0 80 65 25 5.10 0.4943 WVFGRD96 132.0 80 65 25 5.10 0.4926 WVFGRD96 134.0 80 65 25 5.10 0.4910 WVFGRD96 136.0 80 65 25 5.10 0.4899 WVFGRD96 138.0 80 65 25 5.10 0.4886 WVFGRD96 140.0 80 65 25 5.10 0.4866 WVFGRD96 142.0 80 65 25 5.10 0.4841 WVFGRD96 144.0 80 65 25 5.11 0.4814 WVFGRD96 146.0 80 65 25 5.11 0.4782 WVFGRD96 148.0 80 65 25 5.11 0.4743
The best solution is
WVFGRD96 124.0 80 65 25 5.09 0.4971
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00