Location

Location ANSS

The ANSS event ID is ak0159h0d1de and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0159h0d1de/executive.

2015/07/25 19:57:43 61.949 -152.052 125.6 5.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/07/25 19:57:43:0  61.95 -152.05 125.6 5.1 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.BRLK AK.CAPN AK.CCB AK.CNP AK.EYAK AK.FID 
   AK.FIRE AK.GLB AK.GLI AK.HDA AK.HIN AK.HOM AK.KLU AK.KNK 
   AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPLA AK.PWL 
   AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN 
   AK.SUCK AK.SWD AK.TRF AK.VRDI AK.WRH AT.PMR IM.IL31 IU.COLA 
   TA.I23K TA.L27K TA.M24K TA.N25K TA.O22K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.43e+23 dyne-cm
  Mw = 5.09 
  Z  = 124 km
  Plane   Strike  Dip  Rake
   NP1      339    67   153
   NP2       80    65    25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.43e+23     35     299
    N   0.00e+00     55     122
    P  -5.43e+23      2      30

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.23e+23
       Mxy    -3.89e+23
       Mxz     1.09e+23
       Myy     1.47e+23
       Myz    -2.31e+23
       Mzz     1.76e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ######-------------- P              
              ###########------------   --           
             ##############----------------          
           #################-----------------        
          ###################-----------------       
         ######   ############-----------------      
        ####### T #############-----------------     
        #######   ##############----------------     
       ##########################---------------#    
       ###########################------------###    
       ###########################---------######    
       ############################-----#########    
        -##########################-############     
        -------#############--------############     
         ---------------------------###########      
          --------------------------##########       
           -------------------------#########        
             -----------------------#######          
              ----------------------######           
                 -------------------###              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.76e+23   1.09e+23   2.31e+23 
  1.09e+23  -3.23e+23   3.89e+23 
  2.31e+23   3.89e+23   1.47e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150725195743/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 80
      DIP = 65
     RAKE = 25
       MW = 5.09
       HS = 124.0

The NDK file is 20150725195743.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   150    65   -30   4.15 0.1099
WVFGRD96    4.0   250    70    25   4.22 0.1297
WVFGRD96    6.0   250    75    15   4.26 0.1411
WVFGRD96    8.0   250    75    20   4.33 0.1530
WVFGRD96   10.0   250    80   -20   4.36 0.1666
WVFGRD96   12.0   250    75   -20   4.39 0.1803
WVFGRD96   14.0   250    75   -15   4.42 0.1924
WVFGRD96   16.0   250    80   -10   4.45 0.2019
WVFGRD96   18.0   250    80   -10   4.48 0.2088
WVFGRD96   20.0   250    80    -5   4.50 0.2136
WVFGRD96   22.0   250    80    -5   4.52 0.2162
WVFGRD96   24.0   250    80     5   4.55 0.2168
WVFGRD96   26.0   250    80     5   4.56 0.2162
WVFGRD96   28.0   250    80     5   4.58 0.2141
WVFGRD96   30.0   250    80    10   4.60 0.2121
WVFGRD96   32.0   250    80    10   4.62 0.2094
WVFGRD96   34.0   250    80    10   4.64 0.2065
WVFGRD96   36.0   250    85    10   4.67 0.2067
WVFGRD96   38.0    70    90   -10   4.71 0.2099
WVFGRD96   40.0   250    85    15   4.77 0.2242
WVFGRD96   42.0   250    85    15   4.79 0.2264
WVFGRD96   44.0   250    90    20   4.81 0.2305
WVFGRD96   46.0   250    90    15   4.83 0.2365
WVFGRD96   48.0    70    90   -15   4.85 0.2431
WVFGRD96   50.0   250    90    15   4.87 0.2502
WVFGRD96   52.0   250    90    15   4.89 0.2584
WVFGRD96   54.0    70    90   -15   4.90 0.2667
WVFGRD96   56.0   250    85    15   4.92 0.2801
WVFGRD96   58.0   250    85    15   4.93 0.2929
WVFGRD96   60.0   250    85    15   4.95 0.3055
WVFGRD96   62.0   250    90    10   4.96 0.3183
WVFGRD96   64.0   250    90    10   4.97 0.3313
WVFGRD96   66.0    70    90   -10   4.98 0.3437
WVFGRD96   68.0    70    85    -5   4.99 0.3557
WVFGRD96   70.0    75    75     5   4.99 0.3695
WVFGRD96   72.0    75    75     5   5.00 0.3820
WVFGRD96   74.0    75    70    10   5.00 0.3914
WVFGRD96   76.0    75    70    10   5.01 0.4012
WVFGRD96   78.0    75    70    10   5.01 0.4092
WVFGRD96   80.0    75    70    10   5.02 0.4175
WVFGRD96   82.0    75    70    10   5.03 0.4244
WVFGRD96   84.0    75    70    10   5.03 0.4318
WVFGRD96   86.0    75    70    15   5.03 0.4389
WVFGRD96   88.0    75    70    15   5.04 0.4452
WVFGRD96   90.0    75    70    15   5.05 0.4519
WVFGRD96   92.0    75    70    15   5.05 0.4574
WVFGRD96   94.0    75    70    15   5.05 0.4620
WVFGRD96   96.0    75    70    15   5.06 0.4669
WVFGRD96   98.0    75    70    15   5.06 0.4710
WVFGRD96  100.0    75    70    15   5.07 0.4747
WVFGRD96  102.0    80    65    20   5.07 0.4783
WVFGRD96  104.0    80    65    20   5.07 0.4817
WVFGRD96  106.0    80    65    20   5.07 0.4848
WVFGRD96  108.0    80    65    20   5.08 0.4879
WVFGRD96  110.0    80    65    20   5.08 0.4905
WVFGRD96  112.0    80    65    20   5.08 0.4925
WVFGRD96  114.0    80    65    20   5.09 0.4939
WVFGRD96  116.0    80    65    20   5.09 0.4948
WVFGRD96  118.0    80    65    25   5.09 0.4955
WVFGRD96  120.0    80    65    25   5.09 0.4964
WVFGRD96  122.0    80    65    25   5.09 0.4971
WVFGRD96  124.0    80    65    25   5.09 0.4971
WVFGRD96  126.0    80    65    25   5.10 0.4968
WVFGRD96  128.0    80    65    25   5.10 0.4957
WVFGRD96  130.0    80    65    25   5.10 0.4943
WVFGRD96  132.0    80    65    25   5.10 0.4926
WVFGRD96  134.0    80    65    25   5.10 0.4910
WVFGRD96  136.0    80    65    25   5.10 0.4899
WVFGRD96  138.0    80    65    25   5.10 0.4886
WVFGRD96  140.0    80    65    25   5.10 0.4866
WVFGRD96  142.0    80    65    25   5.10 0.4841
WVFGRD96  144.0    80    65    25   5.11 0.4814
WVFGRD96  146.0    80    65    25   5.11 0.4782
WVFGRD96  148.0    80    65    25   5.11 0.4743

The best solution is

WVFGRD96  124.0    80    65    25   5.09 0.4971

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 08:45:24 PM CDT 2024