The ANSS event ID is nn00503084 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00503084/executive.
2015/07/22 22:07:07 41.888 -119.629 7.8 4 Nevada
USGS/SLU Moment Tensor Solution ENS 2015/07/22 22:07:07:0 41.89 -119.63 7.8 4.0 Nevada Stations used: BK.WDC IM.NV31 IU.COR IW.MFID IW.PLID LB.TPH NC.AFD NC.KBO NC.KCPB NC.KEB NC.KHMB NC.KMR NC.KRMB NC.MDPB NN.BEK NN.KVN NN.LHV NN.PAH NN.PNT NN.REDF NN.RYN NN.SPR3 NN.VCN NN.WAK NN.YER TA.R11A UO.BUCK UO.PINE US.BMO US.ELK US.HAWA US.WVOR UW.BLOW UW.BRAN UW.CCRK UW.DDRF UW.IRON UW.IZEE UW.PHIN UW.TREE UW.TUCA UW.UMAT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.50e+21 dyne-cm Mw = 3.85 Z = 9 km Plane Strike Dip Rake NP1 25 75 -75 NP2 159 21 -134 Principal Axes: Axis Value Plunge Azimuth T 7.50e+21 28 103 N 0.00e+00 14 201 P -7.50e+21 57 315 Moment Tensor: (dyne-cm) Component Value Mxx -7.89e+20 Mxy -1.82e+20 Mxz -3.11e+21 Myy 4.41e+21 Myz 5.47e+21 Mzz -3.62e+21 -------------- #-------------------## ##---------------------##### ##---------------------####### ###----------------------######### ###-----------------------########## ###-------- ------------############ ####-------- P ------------############# ###--------- -----------############## ####----------------------################ ####----------------------################ ####---------------------######### ##### #####-------------------########## T ##### ####------------------########### #### #####----------------################### #####--------------################### #####------------################### #####---------#################### #####------################### ######---################### ####--################ --------###### Global CMT Convention Moment Tensor: R T P -3.62e+21 -3.11e+21 -5.47e+21 -3.11e+21 -7.89e+20 1.82e+20 -5.47e+21 1.82e+20 4.41e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150722220707/index.html |
STK = 25 DIP = 75 RAKE = -75 MW = 3.85 HS = 9.0
The NDK file is 20150722220707.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/07/22 22:07:07:0 41.89 -119.63 7.8 4.0 Nevada Stations used: BK.WDC IM.NV31 IU.COR IW.MFID IW.PLID LB.TPH NC.AFD NC.KBO NC.KCPB NC.KEB NC.KHMB NC.KMR NC.KRMB NC.MDPB NN.BEK NN.KVN NN.LHV NN.PAH NN.PNT NN.REDF NN.RYN NN.SPR3 NN.VCN NN.WAK NN.YER TA.R11A UO.BUCK UO.PINE US.BMO US.ELK US.HAWA US.WVOR UW.BLOW UW.BRAN UW.CCRK UW.DDRF UW.IRON UW.IZEE UW.PHIN UW.TREE UW.TUCA UW.UMAT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.50e+21 dyne-cm Mw = 3.85 Z = 9 km Plane Strike Dip Rake NP1 25 75 -75 NP2 159 21 -134 Principal Axes: Axis Value Plunge Azimuth T 7.50e+21 28 103 N 0.00e+00 14 201 P -7.50e+21 57 315 Moment Tensor: (dyne-cm) Component Value Mxx -7.89e+20 Mxy -1.82e+20 Mxz -3.11e+21 Myy 4.41e+21 Myz 5.47e+21 Mzz -3.62e+21 -------------- #-------------------## ##---------------------##### ##---------------------####### ###----------------------######### ###-----------------------########## ###-------- ------------############ ####-------- P ------------############# ###--------- -----------############## ####----------------------################ ####----------------------################ ####---------------------######### ##### #####-------------------########## T ##### ####------------------########### #### #####----------------################### #####--------------################### #####------------################### #####---------#################### #####------################### ######---################### ####--################ --------###### Global CMT Convention Moment Tensor: R T P -3.62e+21 -3.11e+21 -5.47e+21 -3.11e+21 -7.89e+20 1.82e+20 -5.47e+21 1.82e+20 4.41e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150722220707/index.html |
Regional Moment Tensor (Mwr) Moment 5.807e+14 N-m Magnitude 3.78 Depth 13.0 km Percent DC 73% Half Duration – Catalog US (us20002zd3) Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 33 81 -62 NP2 139 29 -161 Principal Axes Axis Value Plunge Azimuth T 6.178 30 100 N -0.830 28 208 P -5.348 47 332 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 200 75 15 3.47 0.3882 WVFGRD96 2.0 25 45 -85 3.69 0.5643 WVFGRD96 3.0 35 85 -55 3.69 0.4871 WVFGRD96 4.0 35 85 -70 3.79 0.6086 WVFGRD96 5.0 30 85 -70 3.80 0.7002 WVFGRD96 6.0 30 80 -70 3.79 0.7506 WVFGRD96 7.0 25 75 -75 3.79 0.7767 WVFGRD96 8.0 25 75 -75 3.86 0.7935 WVFGRD96 9.0 25 75 -75 3.85 0.8002 WVFGRD96 10.0 25 75 -70 3.84 0.7998 WVFGRD96 11.0 25 75 -65 3.84 0.7940 WVFGRD96 12.0 25 75 -65 3.84 0.7876 WVFGRD96 13.0 25 75 -60 3.84 0.7790 WVFGRD96 14.0 25 75 -60 3.85 0.7700 WVFGRD96 15.0 30 80 -55 3.85 0.7611 WVFGRD96 16.0 30 80 -55 3.86 0.7510 WVFGRD96 17.0 30 80 -55 3.87 0.7395 WVFGRD96 18.0 30 85 -55 3.88 0.7278 WVFGRD96 19.0 30 85 -50 3.89 0.7165 WVFGRD96 20.0 30 85 -50 3.90 0.7044 WVFGRD96 21.0 30 85 -50 3.92 0.6920 WVFGRD96 22.0 210 90 50 3.93 0.6771 WVFGRD96 23.0 210 90 50 3.94 0.6634 WVFGRD96 24.0 30 85 -55 3.94 0.6512 WVFGRD96 25.0 210 90 50 3.96 0.6354 WVFGRD96 26.0 215 90 55 3.96 0.6201 WVFGRD96 27.0 210 90 55 3.97 0.6045 WVFGRD96 28.0 320 40 25 3.98 0.5887 WVFGRD96 29.0 320 40 25 3.98 0.5746
The best solution is
WVFGRD96 9.0 25 75 -75 3.85 0.8002
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00