The ANSS event ID is nn00501944 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00501944/executive.
2015/07/16 01:52:11 41.899 -119.637 10.1 4.6 Nevada
USGS/SLU Moment Tensor Solution ENS 2015/07/16 01:52:11:0 41.90 -119.64 10.1 4.6 Nevada Stations used: BK.WDC IM.NV31 IW.MFID NC.AFD NC.KBO NC.KCPB NC.KEB NC.KHMB NC.KRMB NC.MDPB NN.BEK NN.KVN NN.LHV NN.PAH NN.PNT NN.REDF NN.RUB NN.RYN NN.VCN NN.YER TA.R11A UO.BUCK UO.PINE US.BMO US.ELK US.HAWA US.HLID US.WVOR UW.BLOW UW.BRAN UW.DDRF UW.IRON UW.IZEE UW.PHIN UW.TREE UW.TUCA UW.UMAT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.61e+22 dyne-cm Mw = 4.48 Z = 10 km Plane Strike Dip Rake NP1 30 75 -60 NP2 144 33 -152 Principal Axes: Axis Value Plunge Azimuth T 6.61e+22 24 97 N 0.00e+00 29 201 P -6.61e+22 51 334 Moment Tensor: (dyne-cm) Component Value Mxx -2.05e+22 Mxy 3.57e+21 Mxz -3.22e+22 Myy 4.91e+22 Myz 3.86e+22 Mzz -2.86e+22 -------------- ---------------------# #-----------------------#### #------------------------##### ##------------------------######## ###--------- ------------######### ###---------- P -----------########### ####---------- ----------############# ####-----------------------############# #####----------------------############### ######--------------------################ ######-------------------########## #### #######-----------------########### T #### #######---------------############ ### ########------------#################### ########----------#################### ########--------#################### #########----##################### ############################## #######-----################ #--------------#####-- -------------- Global CMT Convention Moment Tensor: R T P -2.86e+22 -3.22e+22 -3.86e+22 -3.22e+22 -2.05e+22 -3.57e+21 -3.86e+22 -3.57e+21 4.91e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150716015211/index.html |
STK = 30 DIP = 75 RAKE = -60 MW = 4.48 HS = 10.0
The NDK file is 20150716015211.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/07/16 01:52:11:0 41.90 -119.64 10.1 4.6 Nevada Stations used: BK.WDC IM.NV31 IW.MFID NC.AFD NC.KBO NC.KCPB NC.KEB NC.KHMB NC.KRMB NC.MDPB NN.BEK NN.KVN NN.LHV NN.PAH NN.PNT NN.REDF NN.RUB NN.RYN NN.VCN NN.YER TA.R11A UO.BUCK UO.PINE US.BMO US.ELK US.HAWA US.HLID US.WVOR UW.BLOW UW.BRAN UW.DDRF UW.IRON UW.IZEE UW.PHIN UW.TREE UW.TUCA UW.UMAT Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.61e+22 dyne-cm Mw = 4.48 Z = 10 km Plane Strike Dip Rake NP1 30 75 -60 NP2 144 33 -152 Principal Axes: Axis Value Plunge Azimuth T 6.61e+22 24 97 N 0.00e+00 29 201 P -6.61e+22 51 334 Moment Tensor: (dyne-cm) Component Value Mxx -2.05e+22 Mxy 3.57e+21 Mxz -3.22e+22 Myy 4.91e+22 Myz 3.86e+22 Mzz -2.86e+22 -------------- ---------------------# #-----------------------#### #------------------------##### ##------------------------######## ###--------- ------------######### ###---------- P -----------########### ####---------- ----------############# ####-----------------------############# #####----------------------############### ######--------------------################ ######-------------------########## #### #######-----------------########### T #### #######---------------############ ### ########------------#################### ########----------#################### ########--------#################### #########----##################### ############################## #######-----################ #--------------#####-- -------------- Global CMT Convention Moment Tensor: R T P -2.86e+22 -3.22e+22 -3.86e+22 -3.22e+22 -2.05e+22 -3.57e+21 -3.86e+22 -3.57e+21 4.91e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150716015211/index.html |
Regional Moment Tensor (Mwr) Moment 6.974e+15 N-m Magnitude 4.50 Depth 8.0 km Percent DC 83% Half Duration – Catalog US (us20002xtw) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 32 80 -65 NP2 141 27 -158 Principal Axes Axis Value Plunge Azimuth T 7.259 31 101 N -0.608 25 207 P -6.650 49 329 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 210 70 20 4.10 0.4030 WVFGRD96 2.0 25 45 -85 4.33 0.5597 WVFGRD96 3.0 40 80 40 4.30 0.5658 WVFGRD96 4.0 35 85 -65 4.43 0.6648 WVFGRD96 5.0 35 85 -65 4.43 0.7477 WVFGRD96 6.0 30 80 -65 4.43 0.7910 WVFGRD96 7.0 30 75 -60 4.43 0.8118 WVFGRD96 8.0 30 75 -65 4.49 0.8294 WVFGRD96 9.0 30 75 -60 4.48 0.8372 WVFGRD96 10.0 30 75 -60 4.48 0.8398 WVFGRD96 11.0 30 75 -55 4.48 0.8377 WVFGRD96 12.0 35 80 -50 4.48 0.8333 WVFGRD96 13.0 35 80 -50 4.49 0.8293 WVFGRD96 14.0 35 80 -50 4.49 0.8226 WVFGRD96 15.0 35 80 -50 4.50 0.8138 WVFGRD96 16.0 35 85 -45 4.52 0.8043 WVFGRD96 17.0 35 85 -45 4.52 0.7934 WVFGRD96 18.0 35 85 -45 4.53 0.7810 WVFGRD96 19.0 35 85 -45 4.54 0.7673 WVFGRD96 20.0 35 85 -45 4.55 0.7531 WVFGRD96 21.0 35 85 -45 4.56 0.7384 WVFGRD96 22.0 35 85 -45 4.57 0.7228 WVFGRD96 23.0 35 90 -45 4.58 0.7069 WVFGRD96 24.0 35 90 -45 4.59 0.6917 WVFGRD96 25.0 215 90 45 4.60 0.6764 WVFGRD96 26.0 220 85 45 4.60 0.6604 WVFGRD96 27.0 220 85 45 4.61 0.6439 WVFGRD96 28.0 35 90 -45 4.62 0.6264 WVFGRD96 29.0 40 90 -50 4.62 0.6092
The best solution is
WVFGRD96 10.0 30 75 -60 4.48 0.8398
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00