The ANSS event ID is ak01581sc69w and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01581sc69w/executive.
2015/06/24 22:32:20 61.664 -151.962 114.2 5.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/06/24 22:32:20:0 61.66 -151.96 114.2 5.8 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB AK.CNP AK.CUT AK.FID AK.FIRE AK.GLB AK.GLI AK.HDA AK.HIN AK.KLU AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PPD AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TRF AK.VRDI AK.WRH II.KDAK IU.COLA TA.I23K TA.K27K TA.L27K TA.M24K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.76e+24 dyne-cm Mw = 5.82 Z = 122 km Plane Strike Dip Rake NP1 296 54 110 NP2 85 40 65 Principal Axes: Axis Value Plunge Azimuth T 6.76e+24 72 258 N 0.00e+00 16 105 P -6.76e+24 7 13 Moment Tensor: (dyne-cm) Component Value Mxx -6.31e+24 Mxy -1.28e+24 Mxz -1.25e+24 Myy 2.73e+23 Myz -2.09e+24 Mzz 6.03e+24 ---------- P - -------------- ----- ---------------------------- ------------------------------ ---------------------------------- -################------------------- ######################---------------- ###########################------------- ##############################---------- #################################--------- ############### #################------# ############### T ##################-----# -############## ###################--### -####################################### ---################################---## ----############################-----# ------#####################--------- -----------##########------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 6.03e+24 -1.25e+24 2.09e+24 -1.25e+24 -6.31e+24 1.28e+24 2.09e+24 1.28e+24 2.73e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150624223220/index.html |
STK = 85 DIP = 40 RAKE = 65 MW = 5.82 HS = 122.0
The NDK file is 20150624223220.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/06/24 22:32:20:0 61.66 -151.96 114.2 5.8 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB AK.CNP AK.CUT AK.FID AK.FIRE AK.GLB AK.GLI AK.HDA AK.HIN AK.KLU AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PPD AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TRF AK.VRDI AK.WRH II.KDAK IU.COLA TA.I23K TA.K27K TA.L27K TA.M24K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.76e+24 dyne-cm Mw = 5.82 Z = 122 km Plane Strike Dip Rake NP1 296 54 110 NP2 85 40 65 Principal Axes: Axis Value Plunge Azimuth T 6.76e+24 72 258 N 0.00e+00 16 105 P -6.76e+24 7 13 Moment Tensor: (dyne-cm) Component Value Mxx -6.31e+24 Mxy -1.28e+24 Mxz -1.25e+24 Myy 2.73e+23 Myz -2.09e+24 Mzz 6.03e+24 ---------- P - -------------- ----- ---------------------------- ------------------------------ ---------------------------------- -################------------------- ######################---------------- ###########################------------- ##############################---------- #################################--------- ############### #################------# ############### T ##################-----# -############## ###################--### -####################################### ---################################---## ----############################-----# ------#####################--------- -----------##########------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 6.03e+24 -1.25e+24 2.09e+24 -1.25e+24 -6.31e+24 1.28e+24 2.09e+24 1.28e+24 2.73e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150624223220/index.html |
Regional Moment Tensor (Mwr) Moment 6.017e+17 N-m Magnitude 5.79 Depth 114.0 km Percent DC 71% Half Duration - Catalog US (us10002lgv) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 301 59 111 NP2 85 37 60 Principal Axes Axis Value Plunge Azimuth T 6.428 69 255 N -0.930 18 110 P -5.498 12 17 |
une 24, 2015, SOUTHERN ALASKA, MW=5.8 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201506242232A DATA: II IU DK CU MN G IC LD GE XF KP L.P.BODY WAVES:157S, 336C, T= 40 MANTLE WAVES: 65S, 76C, T=125 SURFACE WAVES: 168S, 391C, T= 50 TIMESTAMP: Q-20150625080531 CENTROID LOCATION: ORIGIN TIME: 22:32:22.9 0.1 LAT:61.83N 0.01;LON:152.01W 0.01 DEP:125.5 0.5;TRIANG HDUR: 2.0 MOMENT TENSOR: SCALE 10**24 D-CM RR= 5.500 0.052; TT=-6.110 0.062 PP= 0.603 0.065; RT=-1.270 0.050 RP= 3.170 0.046; TP= 1.730 0.057 PRINCIPAL AXES: 1.(T) VAL= 7.068;PLG=64;AZM=266 2.(N) -0.201; 24; 111 3.(P) -6.874; 10; 17 BEST DBLE.COUPLE:M0= 6.97*10**24 NP1: STRIKE= 81;DIP=41;SLIP= 52 NP2: STRIKE=307;DIP=59;SLIP= 118 -------- ------------ P ---- -------------- ------ -####---------------------- #############---------------- #################-------------- ####################----------- #######################---------- ########## ############-------# ########## T #############-----## ########## ##############---### -##########################-### ---######################---### -----################-------# --------------------------- ----------------------- ------------------- ----------- |
W-phase Moment Tensor (Mww) Moment 5.642e+17 N-m Magnitude 5.77 Depth 120.5 km Percent DC 86% Half Duration - Catalog AK (ak11632992) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 301 53 118 NP2 79 45 58 Principal Axes Axis Value Plunge Azimuth T 5.836 67 272 N -0.409 22 103 P -5.426 4 11 |
Centroid Moment Tensor (Mwc) Moment 6.820e+17 N-m Magnitude 5.82 Depth 105.8 km Percent DC 89% Half Duration - Catalog US (us10002lgv) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 297 54 120 NP2 72 46 55 Principal Axes Axis Value Plunge Azimuth T 6.998 65 265 N -0.371 24 98 P -6.627 5 6 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 45 45 -85 5.00 0.1493 WVFGRD96 4.0 60 80 40 5.05 0.1530 WVFGRD96 6.0 60 80 40 5.10 0.1867 WVFGRD96 8.0 55 90 50 5.17 0.2093 WVFGRD96 10.0 55 90 45 5.18 0.2282 WVFGRD96 12.0 55 90 45 5.20 0.2374 WVFGRD96 14.0 60 80 40 5.21 0.2424 WVFGRD96 16.0 60 80 40 5.23 0.2451 WVFGRD96 18.0 60 80 40 5.24 0.2461 WVFGRD96 20.0 60 80 40 5.25 0.2461 WVFGRD96 22.0 60 80 40 5.27 0.2458 WVFGRD96 24.0 60 80 40 5.28 0.2448 WVFGRD96 26.0 60 80 40 5.29 0.2428 WVFGRD96 28.0 60 80 40 5.31 0.2399 WVFGRD96 30.0 60 80 35 5.32 0.2363 WVFGRD96 32.0 60 80 35 5.34 0.2321 WVFGRD96 34.0 60 85 35 5.35 0.2286 WVFGRD96 36.0 240 90 -30 5.37 0.2236 WVFGRD96 38.0 240 90 -30 5.39 0.2231 WVFGRD96 40.0 65 85 40 5.48 0.2254 WVFGRD96 42.0 55 65 -30 5.55 0.2285 WVFGRD96 44.0 55 65 -30 5.57 0.2313 WVFGRD96 46.0 55 65 -30 5.58 0.2333 WVFGRD96 48.0 55 60 -25 5.59 0.2348 WVFGRD96 50.0 55 60 -25 5.60 0.2382 WVFGRD96 52.0 55 60 -25 5.62 0.2415 WVFGRD96 54.0 55 55 0 5.60 0.2484 WVFGRD96 56.0 55 55 0 5.61 0.2581 WVFGRD96 58.0 60 55 15 5.61 0.2697 WVFGRD96 60.0 60 55 15 5.63 0.2821 WVFGRD96 62.0 60 55 15 5.64 0.2943 WVFGRD96 64.0 60 55 15 5.65 0.3055 WVFGRD96 66.0 65 55 20 5.67 0.3159 WVFGRD96 68.0 65 55 20 5.68 0.3249 WVFGRD96 70.0 65 55 20 5.69 0.3372 WVFGRD96 72.0 65 55 20 5.70 0.3496 WVFGRD96 74.0 65 50 20 5.71 0.3603 WVFGRD96 76.0 70 45 40 5.70 0.3700 WVFGRD96 78.0 70 45 40 5.71 0.3822 WVFGRD96 80.0 70 45 45 5.72 0.3925 WVFGRD96 82.0 70 45 45 5.73 0.4022 WVFGRD96 84.0 70 45 45 5.73 0.4117 WVFGRD96 86.0 75 40 50 5.74 0.4210 WVFGRD96 88.0 80 40 55 5.75 0.4297 WVFGRD96 90.0 80 40 55 5.76 0.4386 WVFGRD96 92.0 80 40 55 5.76 0.4466 WVFGRD96 94.0 80 40 55 5.77 0.4539 WVFGRD96 96.0 80 40 55 5.78 0.4606 WVFGRD96 98.0 80 40 55 5.78 0.4668 WVFGRD96 100.0 80 40 55 5.79 0.4726 WVFGRD96 102.0 80 40 55 5.79 0.4775 WVFGRD96 104.0 80 40 60 5.79 0.4821 WVFGRD96 106.0 80 40 60 5.80 0.4862 WVFGRD96 108.0 80 40 60 5.80 0.4896 WVFGRD96 110.0 80 40 60 5.80 0.4923 WVFGRD96 112.0 80 40 60 5.81 0.4948 WVFGRD96 114.0 80 40 60 5.81 0.4964 WVFGRD96 116.0 85 40 65 5.82 0.4977 WVFGRD96 118.0 85 40 65 5.82 0.4991 WVFGRD96 120.0 85 40 65 5.82 0.4997 WVFGRD96 122.0 85 40 65 5.82 0.5001 WVFGRD96 124.0 85 40 65 5.83 0.4994 WVFGRD96 126.0 85 40 65 5.83 0.4984 WVFGRD96 128.0 85 40 65 5.83 0.4976
The best solution is
WVFGRD96 122.0 85 40 65 5.82 0.5001
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00