Location

Location ANSS

The ANSS event ID is ak0156chdx4c and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0156chdx4c/executive.

2015/05/18 15:49:10 61.940 -150.450 21.5 4.3 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/05/18 15:49:10:0  61.94 -150.45  21.5 4.3 Alaska
 
 Stations used:
   AK.BARN AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB 
   AK.COLD AK.CTG AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO 
   AK.GLB AK.GLI AK.GRNC AK.HIN AK.HOM AK.KLU AK.MCK AK.MDM 
   AK.MESA AK.MLY AK.NEA2 AK.PAX AK.PIN AK.PPD AK.PPLA AK.PWL 
   AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.SWD 
   AK.TABL AK.TRF AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH AK.YAH 
   AT.MENT AT.PMR AT.SVW2 IM.IL31 IU.COLA TA.N25K US.EGAK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 1.84e+22 dyne-cm
  Mw = 4.11 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      340    55    80
   NP2      177    36   104
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.84e+22     77     216
    N   0.00e+00      8     346
    P  -1.84e+22      9      77

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.10e+20
       Mxy    -3.47e+21
       Mxz    -3.84e+21
       Myy    -1.67e+22
       Myz    -5.20e+21
       Mzz     1.70e+22
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 -----###--------------              
              ------########--------------           
             ------###########-------------          
           -------#############--------------        
          -------################-------------       
         -------##################-------------      
        -------####################----------        
        -------#####################--------- P      
       --------#####################---------   -    
       --------######################------------    
       --------##########   #########------------    
       --------########## T ##########-----------    
        -------##########   ##########----------     
        --------######################----------     
         -------######################---------      
          -------#####################--------       
           -------####################-------        
             ------###################-----          
              -------################-----           
                 ------#############---              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.70e+22  -3.84e+21   5.20e+21 
 -3.84e+21  -3.10e+20   3.47e+21 
  5.20e+21   3.47e+21  -1.67e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150518154910/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 340
      DIP = 55
     RAKE = 80
       MW = 4.11
       HS = 28.0

The NDK file is 20150518154910.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/05/18 15:49:10:0  61.94 -150.45  21.5 4.3 Alaska
 
 Stations used:
   AK.BARN AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB 
   AK.COLD AK.CTG AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO 
   AK.GLB AK.GLI AK.GRNC AK.HIN AK.HOM AK.KLU AK.MCK AK.MDM 
   AK.MESA AK.MLY AK.NEA2 AK.PAX AK.PIN AK.PPD AK.PPLA AK.PWL 
   AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.SWD 
   AK.TABL AK.TRF AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH AK.YAH 
   AT.MENT AT.PMR AT.SVW2 IM.IL31 IU.COLA TA.N25K US.EGAK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 1.84e+22 dyne-cm
  Mw = 4.11 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      340    55    80
   NP2      177    36   104
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.84e+22     77     216
    N   0.00e+00      8     346
    P  -1.84e+22      9      77

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.10e+20
       Mxy    -3.47e+21
       Mxz    -3.84e+21
       Myy    -1.67e+22
       Myz    -5.20e+21
       Mzz     1.70e+22
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 -----###--------------              
              ------########--------------           
             ------###########-------------          
           -------#############--------------        
          -------################-------------       
         -------##################-------------      
        -------####################----------        
        -------#####################--------- P      
       --------#####################---------   -    
       --------######################------------    
       --------##########   #########------------    
       --------########## T ##########-----------    
        -------##########   ##########----------     
        --------######################----------     
         -------######################---------      
          -------#####################--------       
           -------####################-------        
             ------###################-----          
              -------################-----           
                 ------#############---              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.70e+22  -3.84e+21   5.20e+21 
 -3.84e+21  -3.10e+20   3.47e+21 
  5.20e+21   3.47e+21  -1.67e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150518154910/index.html
	
Regional Moment Tensor (Mwr)
Moment	1.957e+15 N-m
Magnitude	4.13
Depth	28.0 km
Percent DC	82%
Half Duration	–
Catalog	AK (ak11600239)
Data Source	US2
Contributor	US2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	338°	66°	73°
NP2	195°	29°	123°
Principal Axes
Axis	Value	Plunge	Azimuth
T	2.040	65°	219°
N	-0.179	15°	345°
P	-1.861	19°	81°

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   345    45   -90   3.74 0.3509
WVFGRD96    4.0    55    60   -40   3.76 0.2238
WVFGRD96    6.0   205    15   -40   3.77 0.2633
WVFGRD96    8.0   195    15   -50   3.86 0.3182
WVFGRD96   10.0   190    15   -55   3.88 0.3704
WVFGRD96   12.0   175    10   -70   3.89 0.4101
WVFGRD96   14.0   320    20    75   3.93 0.4522
WVFGRD96   16.0   170    30   105   3.97 0.5142
WVFGRD96   18.0   335    60    80   4.00 0.5732
WVFGRD96   20.0   335    60    80   4.03 0.6205
WVFGRD96   22.0   340    60    80   4.06 0.6543
WVFGRD96   24.0   340    60    80   4.08 0.6807
WVFGRD96   26.0   340    55    80   4.09 0.6972
WVFGRD96   28.0   340    55    80   4.11 0.7049
WVFGRD96   30.0   335    55    75   4.13 0.7019
WVFGRD96   32.0   335    55    75   4.14 0.6874
WVFGRD96   34.0   335    55    75   4.15 0.6599
WVFGRD96   36.0   335    55    70   4.17 0.6243
WVFGRD96   38.0   330    55    65   4.19 0.5868
WVFGRD96   40.0   335    65    70   4.29 0.5091
WVFGRD96   42.0   175    50    95   4.28 0.5022
WVFGRD96   44.0   350    40    85   4.30 0.4875
WVFGRD96   46.0   345    40    80   4.31 0.4681
WVFGRD96   48.0   345    40    80   4.32 0.4451
WVFGRD96   50.0   340    40    75   4.32 0.4204
WVFGRD96   52.0   340    40    75   4.33 0.3947
WVFGRD96   54.0   335    40    70   4.33 0.3709
WVFGRD96   56.0   330    40    65   4.34 0.3492
WVFGRD96   58.0   355    25    90   4.32 0.3337
WVFGRD96   60.0   365    25   100   4.32 0.3233
WVFGRD96   62.0   355    20    95   4.33 0.3121
WVFGRD96   64.0   170    70    90   4.33 0.3020
WVFGRD96   66.0   175    70    90   4.34 0.2923
WVFGRD96   68.0   350    20    85   4.34 0.2826
WVFGRD96   70.0   155    30    50   4.29 0.2848
WVFGRD96   72.0   150    35    45   4.30 0.2895
WVFGRD96   74.0   150    35    50   4.30 0.2945
WVFGRD96   76.0   150    35    50   4.31 0.2989
WVFGRD96   78.0   150    35    50   4.31 0.3025
WVFGRD96   80.0   155    35    55   4.32 0.3052
WVFGRD96   82.0   155    35    55   4.32 0.3075
WVFGRD96   84.0   155    35    55   4.33 0.3093
WVFGRD96   86.0   155    35    55   4.33 0.3104
WVFGRD96   88.0   155    35    55   4.34 0.3108
WVFGRD96   90.0   145    35    60   4.34 0.3113
WVFGRD96   92.0   150    35    65   4.34 0.3116
WVFGRD96   94.0   150    35    65   4.34 0.3131
WVFGRD96   96.0   155    35    70   4.35 0.3142
WVFGRD96   98.0   155    35    70   4.35 0.3156

The best solution is

WVFGRD96   28.0   340    55    80   4.11 0.7049

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 04:51:57 PM CDT 2024