The ANSS event ID is ak0156chdx4c and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0156chdx4c/executive.
2015/05/18 15:49:10 61.940 -150.450 21.5 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/05/18 15:49:10:0 61.94 -150.45 21.5 4.3 Alaska Stations used: AK.BARN AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB AK.COLD AK.CTG AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.HOM AK.KLU AK.MCK AK.MDM AK.MESA AK.MLY AK.NEA2 AK.PAX AK.PIN AK.PPD AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.SWD AK.TABL AK.TRF AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH AK.YAH AT.MENT AT.PMR AT.SVW2 IM.IL31 IU.COLA TA.N25K US.EGAK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.84e+22 dyne-cm Mw = 4.11 Z = 28 km Plane Strike Dip Rake NP1 340 55 80 NP2 177 36 104 Principal Axes: Axis Value Plunge Azimuth T 1.84e+22 77 216 N 0.00e+00 8 346 P -1.84e+22 9 77 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+20 Mxy -3.47e+21 Mxz -3.84e+21 Myy -1.67e+22 Myz -5.20e+21 Mzz 1.70e+22 ###----------- -----###-------------- ------########-------------- ------###########------------- -------#############-------------- -------################------------- -------##################------------- -------####################---------- -------#####################--------- P --------#####################--------- - --------######################------------ --------########## #########------------ --------########## T ##########----------- -------########## ##########---------- --------######################---------- -------######################--------- -------#####################-------- -------####################------- ------###################----- -------################----- ------#############--- -----######### Global CMT Convention Moment Tensor: R T P 1.70e+22 -3.84e+21 5.20e+21 -3.84e+21 -3.10e+20 3.47e+21 5.20e+21 3.47e+21 -1.67e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150518154910/index.html |
STK = 340 DIP = 55 RAKE = 80 MW = 4.11 HS = 28.0
The NDK file is 20150518154910.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/05/18 15:49:10:0 61.94 -150.45 21.5 4.3 Alaska Stations used: AK.BARN AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CAPN AK.CCB AK.COLD AK.CTG AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.HOM AK.KLU AK.MCK AK.MDM AK.MESA AK.MLY AK.NEA2 AK.PAX AK.PIN AK.PPD AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.SWD AK.TABL AK.TRF AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH AK.YAH AT.MENT AT.PMR AT.SVW2 IM.IL31 IU.COLA TA.N25K US.EGAK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.84e+22 dyne-cm Mw = 4.11 Z = 28 km Plane Strike Dip Rake NP1 340 55 80 NP2 177 36 104 Principal Axes: Axis Value Plunge Azimuth T 1.84e+22 77 216 N 0.00e+00 8 346 P -1.84e+22 9 77 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+20 Mxy -3.47e+21 Mxz -3.84e+21 Myy -1.67e+22 Myz -5.20e+21 Mzz 1.70e+22 ###----------- -----###-------------- ------########-------------- ------###########------------- -------#############-------------- -------################------------- -------##################------------- -------####################---------- -------#####################--------- P --------#####################--------- - --------######################------------ --------########## #########------------ --------########## T ##########----------- -------########## ##########---------- --------######################---------- -------######################--------- -------#####################-------- -------####################------- ------###################----- -------################----- ------#############--- -----######### Global CMT Convention Moment Tensor: R T P 1.70e+22 -3.84e+21 5.20e+21 -3.84e+21 -3.10e+20 3.47e+21 5.20e+21 3.47e+21 -1.67e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150518154910/index.html |
Regional Moment Tensor (Mwr) Moment 1.957e+15 N-m Magnitude 4.13 Depth 28.0 km Percent DC 82% Half Duration – Catalog AK (ak11600239) Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 338° 66° 73° NP2 195° 29° 123° Principal Axes Axis Value Plunge Azimuth T 2.040 65° 219° N -0.179 15° 345° P -1.861 19° 81° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 345 45 -90 3.74 0.3509 WVFGRD96 4.0 55 60 -40 3.76 0.2238 WVFGRD96 6.0 205 15 -40 3.77 0.2633 WVFGRD96 8.0 195 15 -50 3.86 0.3182 WVFGRD96 10.0 190 15 -55 3.88 0.3704 WVFGRD96 12.0 175 10 -70 3.89 0.4101 WVFGRD96 14.0 320 20 75 3.93 0.4522 WVFGRD96 16.0 170 30 105 3.97 0.5142 WVFGRD96 18.0 335 60 80 4.00 0.5732 WVFGRD96 20.0 335 60 80 4.03 0.6205 WVFGRD96 22.0 340 60 80 4.06 0.6543 WVFGRD96 24.0 340 60 80 4.08 0.6807 WVFGRD96 26.0 340 55 80 4.09 0.6972 WVFGRD96 28.0 340 55 80 4.11 0.7049 WVFGRD96 30.0 335 55 75 4.13 0.7019 WVFGRD96 32.0 335 55 75 4.14 0.6874 WVFGRD96 34.0 335 55 75 4.15 0.6599 WVFGRD96 36.0 335 55 70 4.17 0.6243 WVFGRD96 38.0 330 55 65 4.19 0.5868 WVFGRD96 40.0 335 65 70 4.29 0.5091 WVFGRD96 42.0 175 50 95 4.28 0.5022 WVFGRD96 44.0 350 40 85 4.30 0.4875 WVFGRD96 46.0 345 40 80 4.31 0.4681 WVFGRD96 48.0 345 40 80 4.32 0.4451 WVFGRD96 50.0 340 40 75 4.32 0.4204 WVFGRD96 52.0 340 40 75 4.33 0.3947 WVFGRD96 54.0 335 40 70 4.33 0.3709 WVFGRD96 56.0 330 40 65 4.34 0.3492 WVFGRD96 58.0 355 25 90 4.32 0.3337 WVFGRD96 60.0 365 25 100 4.32 0.3233 WVFGRD96 62.0 355 20 95 4.33 0.3121 WVFGRD96 64.0 170 70 90 4.33 0.3020 WVFGRD96 66.0 175 70 90 4.34 0.2923 WVFGRD96 68.0 350 20 85 4.34 0.2826 WVFGRD96 70.0 155 30 50 4.29 0.2848 WVFGRD96 72.0 150 35 45 4.30 0.2895 WVFGRD96 74.0 150 35 50 4.30 0.2945 WVFGRD96 76.0 150 35 50 4.31 0.2989 WVFGRD96 78.0 150 35 50 4.31 0.3025 WVFGRD96 80.0 155 35 55 4.32 0.3052 WVFGRD96 82.0 155 35 55 4.32 0.3075 WVFGRD96 84.0 155 35 55 4.33 0.3093 WVFGRD96 86.0 155 35 55 4.33 0.3104 WVFGRD96 88.0 155 35 55 4.34 0.3108 WVFGRD96 90.0 145 35 60 4.34 0.3113 WVFGRD96 92.0 150 35 65 4.34 0.3116 WVFGRD96 94.0 150 35 65 4.34 0.3131 WVFGRD96 96.0 155 35 70 4.35 0.3142 WVFGRD96 98.0 155 35 70 4.35 0.3156
The best solution is
WVFGRD96 28.0 340 55 80 4.11 0.7049
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00