The ANSS event ID is ak01560swtbz and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01560swtbz/executive.
2015/05/11 09:25:42 63.085 -148.251 67.4 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/05/11 09:25:42:0 63.08 -148.25 67.4 4.5 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.CRQ AK.CUT AK.GHO AK.GLB AK.KLU AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPD AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TRF AK.WAT3 AK.WAT4 AK.WRH AT.MENT AT.PMR IM.IL31 IU.COLA TA.K27K TA.L27K TA.N25K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 8.13e+22 dyne-cm Mw = 4.54 Z = 74 km Plane Strike Dip Rake NP1 35 85 175 NP2 125 85 5 Principal Axes: Axis Value Plunge Azimuth T 8.13e+22 7 350 N 0.00e+00 83 170 P -8.13e+22 0 80 Moment Tensor: (dyne-cm) Component Value Mxx 7.50e+22 Mxy -2.82e+22 Mxz 9.76e+21 Myy -7.62e+22 Myz -1.78e+21 Mzz 1.23e+21 ## T ######### ###### ############# #########################--- #########################----- ##########################-------- ---#######################---------- ------####################------------ ---------#################-------------- ------------#############-------------- ---------------#########---------------- P -----------------######----------------- --------------------##-------------------- ---------------------##------------------- ------------------#######--------------- -----------------##########------------- ---------------##############--------- ------------####################---- ----------######################## ------######################## ----######################## ###################### ############## Global CMT Convention Moment Tensor: R T P 1.23e+21 9.76e+21 1.78e+21 9.76e+21 7.50e+22 2.82e+22 1.78e+21 2.82e+22 -7.62e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150511092542/index.html |
STK = 125 DIP = 85 RAKE = 5 MW = 4.54 HS = 74.0
The NDK file is 20150511092542.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/05/11 09:25:42:0 63.08 -148.25 67.4 4.5 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.CRQ AK.CUT AK.GHO AK.GLB AK.KLU AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA2 AK.PAX AK.PPD AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TRF AK.WAT3 AK.WAT4 AK.WRH AT.MENT AT.PMR IM.IL31 IU.COLA TA.K27K TA.L27K TA.N25K TA.POKR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 8.13e+22 dyne-cm Mw = 4.54 Z = 74 km Plane Strike Dip Rake NP1 35 85 175 NP2 125 85 5 Principal Axes: Axis Value Plunge Azimuth T 8.13e+22 7 350 N 0.00e+00 83 170 P -8.13e+22 0 80 Moment Tensor: (dyne-cm) Component Value Mxx 7.50e+22 Mxy -2.82e+22 Mxz 9.76e+21 Myy -7.62e+22 Myz -1.78e+21 Mzz 1.23e+21 ## T ######### ###### ############# #########################--- #########################----- ##########################-------- ---#######################---------- ------####################------------ ---------#################-------------- ------------#############-------------- ---------------#########---------------- P -----------------######----------------- --------------------##-------------------- ---------------------##------------------- ------------------#######--------------- -----------------##########------------- ---------------##############--------- ------------####################---- ----------######################## ------######################## ----######################## ###################### ############## Global CMT Convention Moment Tensor: R T P 1.23e+21 9.76e+21 1.78e+21 9.76e+21 7.50e+22 2.82e+22 1.78e+21 2.82e+22 -7.62e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150511092542/index.html |
Regional Moment Tensor (Mwr) Moment 8.546e+15 N-m Magnitude 4.55 Depth 73.0 km Percent DC 97% Half Duration – Catalog AK (ak11589443) Data Source US2 Contributor US2 Nodal Planes Plane Strike Dip Rake NP1 33° 89° 177° NP2 123° 87° 1° Principal Axes Axis Value Plunge Azimuth T 8.472 3° 348° N 0.146 87° 197° P -8.618 1° 78° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 125 90 -5 3.68 0.2730 WVFGRD96 4.0 305 80 5 3.77 0.3294 WVFGRD96 6.0 305 85 5 3.83 0.3649 WVFGRD96 8.0 305 80 5 3.89 0.3991 WVFGRD96 10.0 305 85 5 3.93 0.4174 WVFGRD96 12.0 125 90 -10 3.96 0.4292 WVFGRD96 14.0 305 90 10 3.99 0.4450 WVFGRD96 16.0 305 90 5 4.01 0.4637 WVFGRD96 18.0 125 85 -5 4.04 0.4835 WVFGRD96 20.0 305 90 5 4.06 0.5019 WVFGRD96 22.0 125 85 -5 4.08 0.5229 WVFGRD96 24.0 125 85 -5 4.10 0.5396 WVFGRD96 26.0 125 85 -5 4.12 0.5544 WVFGRD96 28.0 125 85 0 4.14 0.5674 WVFGRD96 30.0 125 85 0 4.16 0.5773 WVFGRD96 32.0 125 85 0 4.18 0.5871 WVFGRD96 34.0 125 85 0 4.21 0.5966 WVFGRD96 36.0 125 85 0 4.24 0.6072 WVFGRD96 38.0 125 85 0 4.27 0.6263 WVFGRD96 40.0 125 85 0 4.32 0.6525 WVFGRD96 42.0 125 80 0 4.34 0.6657 WVFGRD96 44.0 125 85 5 4.37 0.6783 WVFGRD96 46.0 125 85 5 4.39 0.6910 WVFGRD96 48.0 125 85 5 4.40 0.7050 WVFGRD96 50.0 125 85 5 4.42 0.7191 WVFGRD96 52.0 125 85 5 4.44 0.7327 WVFGRD96 54.0 125 85 5 4.45 0.7451 WVFGRD96 56.0 125 85 5 4.46 0.7570 WVFGRD96 58.0 125 85 5 4.47 0.7673 WVFGRD96 60.0 125 85 5 4.49 0.7760 WVFGRD96 62.0 125 85 5 4.50 0.7831 WVFGRD96 64.0 125 85 5 4.50 0.7890 WVFGRD96 66.0 125 85 5 4.51 0.7935 WVFGRD96 68.0 125 85 5 4.52 0.7981 WVFGRD96 70.0 125 85 5 4.53 0.7999 WVFGRD96 72.0 125 85 5 4.53 0.8017 WVFGRD96 74.0 125 85 5 4.54 0.8024 WVFGRD96 76.0 125 85 5 4.55 0.8012 WVFGRD96 78.0 125 80 0 4.54 0.8008 WVFGRD96 80.0 125 80 0 4.55 0.7994 WVFGRD96 82.0 125 80 0 4.55 0.7974 WVFGRD96 84.0 125 80 0 4.55 0.7948 WVFGRD96 86.0 125 80 0 4.56 0.7921 WVFGRD96 88.0 125 80 0 4.56 0.7897 WVFGRD96 90.0 125 80 0 4.57 0.7859 WVFGRD96 92.0 125 80 0 4.57 0.7826 WVFGRD96 94.0 125 80 0 4.57 0.7787 WVFGRD96 96.0 125 80 0 4.58 0.7743 WVFGRD96 98.0 125 80 0 4.58 0.7698
The best solution is
WVFGRD96 74.0 125 85 5 4.54 0.8024
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00