The ANSS event ID is ak0155xidfbx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0155xidfbx/executive.
2015/05/09 10:15:49 61.516 -146.573 19.9 4 Alaska
USGS/SLU Moment Tensor Solution
ENS 2015/05/09 10:15:49:0 61.52 -146.57 19.9 4.0 Alaska
Stations used:
AK.BARN AK.BMR AK.BWN AK.CRQ AK.CTG AK.CUT AK.DOT AK.FID
AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.KLU AK.KNK AK.KTH
AK.MCAR AK.MCK AK.MLY AK.PAX AK.PPLA AK.RC01 AK.RND AK.SAW
AK.SCM AK.SKN AK.TRF AK.VRDI AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH
AK.YAH AT.PMR TA.I23K TA.M24K TA.N25K TA.POKR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.51e+22 dyne-cm
Mw = 4.20
Z = 44 km
Plane Strike Dip Rake
NP1 55 80 89
NP2 240 10 95
Principal Axes:
Axis Value Plunge Azimuth
T 2.51e+22 55 324
N 0.00e+00 1 55
P -2.51e+22 35 146
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.09e+21
Mxy 3.90e+21
Mxz 1.93e+22
Myy -2.47e+21
Myz -1.36e+22
Mzz 8.56e+21
--------------
----################--
----######################--
--############################
--################################
--################################--
--########### #################-----
--############ T ###############--------
-############# #############----------
--###########################-------------
-##########################---------------
-#######################------------------
-####################---------------------
##################----------------------
-##############-------------------------
##########----------------------------
######------------------ ---------
----------------------- P --------
--------------------- ------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
8.56e+21 1.93e+22 1.36e+22
1.93e+22 -6.09e+21 -3.90e+21
1.36e+22 -3.90e+21 -2.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150509101549/index.html
|
STK = 240
DIP = 10
RAKE = 95
MW = 4.20
HS = 44.0
The NDK file is 20150509101549.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2015/05/09 10:15:49:0 61.52 -146.57 19.9 4.0 Alaska
Stations used:
AK.BARN AK.BMR AK.BWN AK.CRQ AK.CTG AK.CUT AK.DOT AK.FID
AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.KLU AK.KNK AK.KTH
AK.MCAR AK.MCK AK.MLY AK.PAX AK.PPLA AK.RC01 AK.RND AK.SAW
AK.SCM AK.SKN AK.TRF AK.VRDI AK.WAT3 AK.WAT4 AK.WAT5 AK.WRH
AK.YAH AT.PMR TA.I23K TA.M24K TA.N25K TA.POKR
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.51e+22 dyne-cm
Mw = 4.20
Z = 44 km
Plane Strike Dip Rake
NP1 55 80 89
NP2 240 10 95
Principal Axes:
Axis Value Plunge Azimuth
T 2.51e+22 55 324
N 0.00e+00 1 55
P -2.51e+22 35 146
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.09e+21
Mxy 3.90e+21
Mxz 1.93e+22
Myy -2.47e+21
Myz -1.36e+22
Mzz 8.56e+21
--------------
----################--
----######################--
--############################
--################################
--################################--
--########### #################-----
--############ T ###############--------
-############# #############----------
--###########################-------------
-##########################---------------
-#######################------------------
-####################---------------------
##################----------------------
-##############-------------------------
##########----------------------------
######------------------ ---------
----------------------- P --------
--------------------- ------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
8.56e+21 1.93e+22 1.36e+22
1.93e+22 -6.09e+21 -3.90e+21
1.36e+22 -3.90e+21 -2.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150509101549/index.html
|
Regional Moment Tensor (Mwr) Moment 2.617e+15 N-m Magnitude 4.21 Depth 43.0 km Percent DC 79% Half Duration – Catalog AK (ak11588180) Data Source US3 Contributor US3 Nodal Planes Plane Strike Dip Rake NP1 243° 11° 99° NP2 54° 79° 88° Principal Axes Axis Value Plunge Azimuth T 2.461 56° 322° N 0.289 2° 55° P -2.750 34° 146° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 230 45 90 3.59 0.2946
WVFGRD96 4.0 230 45 95 3.66 0.2319
WVFGRD96 6.0 165 70 -15 3.67 0.2292
WVFGRD96 8.0 160 60 -25 3.73 0.2545
WVFGRD96 10.0 50 80 80 3.70 0.2931
WVFGRD96 12.0 45 80 70 3.72 0.3394
WVFGRD96 14.0 50 75 75 3.75 0.3854
WVFGRD96 16.0 45 75 65 3.79 0.4292
WVFGRD96 18.0 50 70 70 3.82 0.4706
WVFGRD96 20.0 50 75 70 3.84 0.5071
WVFGRD96 22.0 50 75 75 3.87 0.5408
WVFGRD96 24.0 50 75 75 3.89 0.5716
WVFGRD96 26.0 50 80 80 3.92 0.5994
WVFGRD96 28.0 50 80 80 3.94 0.6288
WVFGRD96 30.0 55 80 85 3.96 0.6545
WVFGRD96 32.0 55 80 85 3.98 0.6752
WVFGRD96 34.0 55 80 85 4.00 0.6903
WVFGRD96 36.0 55 80 85 4.01 0.6990
WVFGRD96 38.0 55 80 85 4.02 0.7041
WVFGRD96 40.0 50 85 85 4.17 0.7063
WVFGRD96 42.0 55 80 90 4.19 0.7096
WVFGRD96 44.0 240 10 95 4.20 0.7098
WVFGRD96 46.0 235 10 90 4.21 0.7061
WVFGRD96 48.0 55 80 90 4.22 0.7003
WVFGRD96 50.0 55 80 90 4.23 0.6937
WVFGRD96 52.0 55 80 90 4.24 0.6844
WVFGRD96 54.0 55 80 90 4.24 0.6733
WVFGRD96 56.0 230 10 85 4.25 0.6608
WVFGRD96 58.0 50 85 85 4.25 0.6496
WVFGRD96 60.0 250 5 105 4.26 0.6374
WVFGRD96 62.0 55 85 85 4.26 0.6241
WVFGRD96 64.0 55 85 85 4.27 0.6103
WVFGRD96 66.0 55 85 85 4.27 0.5961
WVFGRD96 68.0 230 90 -80 4.27 0.5788
WVFGRD96 70.0 50 85 80 4.28 0.5674
WVFGRD96 72.0 50 85 80 4.28 0.5531
WVFGRD96 74.0 50 85 80 4.29 0.5386
WVFGRD96 76.0 50 85 80 4.29 0.5246
WVFGRD96 78.0 50 85 75 4.30 0.5114
WVFGRD96 80.0 45 85 70 4.30 0.5005
WVFGRD96 82.0 45 85 70 4.30 0.4906
WVFGRD96 84.0 45 85 70 4.31 0.4811
WVFGRD96 86.0 45 85 70 4.31 0.4715
WVFGRD96 88.0 45 85 70 4.31 0.4618
WVFGRD96 90.0 45 85 65 4.32 0.4520
WVFGRD96 92.0 220 90 -60 4.32 0.4315
WVFGRD96 94.0 40 85 60 4.32 0.4222
WVFGRD96 96.0 40 90 55 4.33 0.4088
WVFGRD96 98.0 180 65 -85 4.29 0.3960
The best solution is
WVFGRD96 44.0 240 10 95 4.20 0.7098
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00