Location

Location ANSS

The ANSS event ID is ak0152w8vj95 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0152w8vj95/executive.

2015/03/04 03:39:05 60.931 -145.812 14.9 4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/03/04 03:39:05:0  60.93 -145.81  14.9 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CCB AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.RAG AK.RND AK.SAW 
   AK.SCM AK.SSN AK.TGL AK.TRF AK.WRH AT.PMR IM.IL31 IU.COLA 
   TA.K27K TA.N25K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.30e+22 dyne-cm
  Mw = 4.01 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      139    81   -155
   NP2       45    65   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.30e+22     11     270
    N   0.00e+00     63     158
    P  -1.30e+22     24       5

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+22
       Mxy    -8.67e+20
       Mxz    -4.86e+21
       Myy     1.25e+22
       Myz    -2.81e+21
       Mzz    -1.73e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------   --------              
              -------------- P -----------           
             ##-------------   ------------          
           #####--------------------------###        
          #######-------------------------####       
         ##########----------------------######      
        ############--------------------########     
        #############-------------------########     
       ################---------------###########    
       #   #############-------------############    
       # T ###############----------#############    
       #   ################-------###############    
        #####################---################     
        ######################-#################     
         ###################-----##############      
          ################---------###########       
           ###########---------------########        
             #####---------------------####          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+21  -4.86e+21   2.81e+21 
 -4.86e+21  -1.08e+22   8.67e+20 
  2.81e+21   8.67e+20   1.25e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150304033905/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 45
      DIP = 65
     RAKE = -10
       MW = 4.01
       HS = 28.0

The NDK file is 20150304033905.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/03/04 03:39:05:0  60.93 -145.81  14.9 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CCB AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.RAG AK.RND AK.SAW 
   AK.SCM AK.SSN AK.TGL AK.TRF AK.WRH AT.PMR IM.IL31 IU.COLA 
   TA.K27K TA.N25K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.30e+22 dyne-cm
  Mw = 4.01 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      139    81   -155
   NP2       45    65   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.30e+22     11     270
    N   0.00e+00     63     158
    P  -1.30e+22     24       5

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+22
       Mxy    -8.67e+20
       Mxz    -4.86e+21
       Myy     1.25e+22
       Myz    -2.81e+21
       Mzz    -1.73e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------   --------              
              -------------- P -----------           
             ##-------------   ------------          
           #####--------------------------###        
          #######-------------------------####       
         ##########----------------------######      
        ############--------------------########     
        #############-------------------########     
       ################---------------###########    
       #   #############-------------############    
       # T ###############----------#############    
       #   ################-------###############    
        #####################---################     
        ######################-#################     
         ###################-----##############      
          ################---------###########       
           ###########---------------########        
             #####---------------------####          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+21  -4.86e+21   2.81e+21 
 -4.86e+21  -1.08e+22   8.67e+20 
  2.81e+21   8.67e+20   1.25e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150304033905/index.html
	
Regional Moment Tensor (Mwr)
Moment	1.645e+15 N-m
Magnitude	4.08
Depth	33.0 km
Percent DC	91%
Half Duration	–
Catalog	AK (ak11521877)
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	141	83	-160
NP2	48	70	-8
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.607	9	273
N	0.072	69	160
P	-1.679	19	6

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   230    90     0   3.47 0.2864
WVFGRD96    2.0    50    85    10   3.59 0.3829
WVFGRD96    3.0   230    90     0   3.64 0.4231
WVFGRD96    4.0    50    85     0   3.68 0.4494
WVFGRD96    5.0    45    75   -10   3.71 0.4727
WVFGRD96    6.0    45    80   -15   3.74 0.4962
WVFGRD96    7.0    45    80   -15   3.77 0.5200
WVFGRD96    8.0    45    75   -20   3.81 0.5427
WVFGRD96    9.0    45    75   -10   3.82 0.5536
WVFGRD96   10.0    45    70   -10   3.84 0.5672
WVFGRD96   11.0    45    70   -10   3.85 0.5790
WVFGRD96   12.0    45    70   -20   3.87 0.5980
WVFGRD96   13.0    45    70   -20   3.88 0.6092
WVFGRD96   14.0    45    70   -20   3.89 0.6184
WVFGRD96   15.0    45    70   -15   3.90 0.6274
WVFGRD96   16.0    45    65   -15   3.91 0.6352
WVFGRD96   17.0    45    65   -15   3.92 0.6437
WVFGRD96   18.0    45    65   -15   3.93 0.6512
WVFGRD96   19.0    45    65   -15   3.94 0.6579
WVFGRD96   20.0    45    65   -15   3.95 0.6637
WVFGRD96   21.0    45    65   -10   3.96 0.6683
WVFGRD96   22.0    45    65   -10   3.97 0.6721
WVFGRD96   23.0    45    65   -10   3.97 0.6752
WVFGRD96   24.0    45    65   -10   3.98 0.6772
WVFGRD96   25.0    45    65   -10   3.99 0.6781
WVFGRD96   26.0    45    65   -10   4.00 0.6787
WVFGRD96   27.0    45    65   -10   4.00 0.6794
WVFGRD96   28.0    45    65   -10   4.01 0.6796
WVFGRD96   29.0    45    65   -10   4.02 0.6784
WVFGRD96   30.0    45    65   -10   4.03 0.6762
WVFGRD96   31.0    45    65   -10   4.03 0.6734
WVFGRD96   32.0    45    65   -10   4.04 0.6696
WVFGRD96   33.0    45    65   -10   4.05 0.6650
WVFGRD96   34.0    45    65   -10   4.06 0.6592
WVFGRD96   35.0    45    70   -10   4.07 0.6548
WVFGRD96   36.0    45    70   -10   4.07 0.6505
WVFGRD96   37.0    45    70   -10   4.08 0.6452
WVFGRD96   38.0    45    70   -10   4.09 0.6395
WVFGRD96   39.0    45    70    -5   4.11 0.6338
WVFGRD96   40.0    45    65   -10   4.15 0.6301
WVFGRD96   41.0    45    65   -10   4.16 0.6311
WVFGRD96   42.0    45    65   -10   4.17 0.6307
WVFGRD96   43.0    45    65   -10   4.17 0.6293
WVFGRD96   44.0    45    65   -10   4.18 0.6274
WVFGRD96   45.0    45    65   -10   4.19 0.6256
WVFGRD96   46.0    45    65   -10   4.19 0.6230
WVFGRD96   47.0    45    70   -10   4.20 0.6207
WVFGRD96   48.0    45    70   -10   4.21 0.6185
WVFGRD96   49.0    45    70   -10   4.21 0.6164

The best solution is

WVFGRD96   28.0    45    65   -10   4.01 0.6796

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 02:15:29 PM CDT 2024