The ANSS event ID is ak0152krol27 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0152krol27/executive.
2015/02/25 09:38:48 63.194 -150.437 122.0 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2015/02/25 09:38:48:0 63.19 -150.44 122.0 4.1 Alaska Stations used: AK.BPAW AK.BWN AK.CCB AK.HDA AK.KTH AK.MDM AK.PAX AK.RND AK.SAW AK.TRF AK.WRH AT.MENT AT.SVW2 AT.TTA IU.COLA TA.I23K TA.M24K Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 132 km Plane Strike Dip Rake NP1 350 85 70 NP2 247 21 166 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 46 239 N 0.00e+00 20 352 P -2.19e+22 37 98 Moment Tensor: (dyne-cm) Component Value Mxx 2.44e+21 Mxy 6.39e+21 Mxz -4.16e+21 Myy -6.01e+21 Myz -1.98e+22 Mzz 3.57e+21 ----########## --------############## --------####------------#### ------#######---------------## -----###########-----------------# ----#############------------------- ----###############------------------- ---#################-------------------- --##################-------------------- ---###################-------------------- --####################----------- ------ --####################----------- P ------ -######### ##########---------- ------ ######### T ##########------------------ -######## ##########------------------ ######################---------------- #####################--------------- ####################-------------- ##################------------ #################----------- ###############------- ###########--- Global CMT Convention Moment Tensor: R T P 3.57e+21 -4.16e+21 1.98e+22 -4.16e+21 2.44e+21 -6.39e+21 1.98e+22 -6.39e+21 -6.01e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150225093848/index.html |
STK = 350 DIP = 85 RAKE = 70 MW = 4.16 HS = 132.0
The NDK file is 20150225093848.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 20 45 -75 3.43 0.1655 WVFGRD96 4.0 80 45 -20 3.40 0.1812 WVFGRD96 6.0 80 40 -15 3.46 0.1977 WVFGRD96 8.0 70 30 -30 3.57 0.2150 WVFGRD96 10.0 75 30 -20 3.60 0.2304 WVFGRD96 12.0 80 30 -15 3.62 0.2432 WVFGRD96 14.0 85 35 -5 3.62 0.2525 WVFGRD96 16.0 90 35 0 3.65 0.2585 WVFGRD96 18.0 90 35 0 3.67 0.2595 WVFGRD96 20.0 90 40 0 3.67 0.2568 WVFGRD96 22.0 100 40 20 3.68 0.2512 WVFGRD96 24.0 100 40 15 3.70 0.2446 WVFGRD96 26.0 5 80 -40 3.71 0.2493 WVFGRD96 28.0 195 75 50 3.74 0.2492 WVFGRD96 30.0 5 80 -45 3.76 0.2543 WVFGRD96 32.0 5 80 -40 3.77 0.2565 WVFGRD96 34.0 5 80 -40 3.78 0.2576 WVFGRD96 36.0 5 80 -35 3.79 0.2598 WVFGRD96 38.0 5 80 -30 3.81 0.2614 WVFGRD96 40.0 5 85 -35 3.87 0.2642 WVFGRD96 42.0 5 85 -30 3.87 0.2647 WVFGRD96 44.0 10 80 -40 3.94 0.2653 WVFGRD96 46.0 5 60 -15 3.88 0.2759 WVFGRD96 48.0 5 65 -10 3.88 0.2866 WVFGRD96 50.0 5 65 -10 3.90 0.2975 WVFGRD96 52.0 5 65 -5 3.90 0.3100 WVFGRD96 54.0 5 70 10 3.89 0.3238 WVFGRD96 56.0 5 70 15 3.90 0.3477 WVFGRD96 58.0 5 75 25 3.92 0.3782 WVFGRD96 60.0 5 75 25 3.94 0.4106 WVFGRD96 62.0 5 80 35 3.96 0.4464 WVFGRD96 64.0 5 80 40 3.98 0.4853 WVFGRD96 66.0 -5 90 40 3.99 0.5255 WVFGRD96 68.0 0 90 40 4.01 0.5658 WVFGRD96 70.0 0 90 40 4.03 0.6036 WVFGRD96 72.0 0 90 45 4.04 0.6396 WVFGRD96 74.0 0 90 50 4.06 0.6689 WVFGRD96 76.0 0 90 50 4.06 0.6881 WVFGRD96 78.0 175 90 -55 4.06 0.6979 WVFGRD96 80.0 -5 90 55 4.07 0.7066 WVFGRD96 82.0 -5 90 55 4.07 0.7140 WVFGRD96 84.0 -5 90 60 4.08 0.7231 WVFGRD96 86.0 -5 90 60 4.09 0.7302 WVFGRD96 88.0 -5 90 60 4.09 0.7385 WVFGRD96 90.0 175 90 -60 4.10 0.7446 WVFGRD96 92.0 175 90 -60 4.10 0.7512 WVFGRD96 94.0 355 90 60 4.10 0.7569 WVFGRD96 96.0 175 90 -60 4.11 0.7616 WVFGRD96 98.0 175 90 -60 4.11 0.7666 WVFGRD96 100.0 175 90 -65 4.12 0.7698 WVFGRD96 102.0 175 90 -65 4.12 0.7745 WVFGRD96 104.0 170 90 -65 4.12 0.7778 WVFGRD96 106.0 170 90 -65 4.12 0.7820 WVFGRD96 100.0 175 90 -65 4.12 0.7698 WVFGRD96 110.0 355 85 65 4.13 0.7885 WVFGRD96 112.0 170 90 -70 4.14 0.7915 WVFGRD96 114.0 170 90 -70 4.14 0.7942 WVFGRD96 116.0 170 90 -70 4.14 0.7970 WVFGRD96 118.0 170 90 -70 4.14 0.7986 WVFGRD96 120.0 170 90 -70 4.15 0.7997 WVFGRD96 122.0 170 90 -70 4.15 0.8000 WVFGRD96 124.0 170 90 -70 4.15 0.8019 WVFGRD96 126.0 350 85 70 4.15 0.8042 WVFGRD96 128.0 350 85 70 4.16 0.8060 WVFGRD96 130.0 170 90 -70 4.16 0.8023 WVFGRD96 132.0 350 85 70 4.16 0.8063 WVFGRD96 134.0 165 90 -75 4.17 0.8034 WVFGRD96 136.0 165 90 -75 4.17 0.8014 WVFGRD96 138.0 350 85 70 4.17 0.8054 WVFGRD96 140.0 350 85 70 4.17 0.8046 WVFGRD96 142.0 350 85 70 4.17 0.8025 WVFGRD96 144.0 350 85 70 4.18 0.8012 WVFGRD96 146.0 345 85 75 4.19 0.8006 WVFGRD96 148.0 345 85 75 4.19 0.7996
The best solution is
WVFGRD96 132.0 350 85 70 4.16 0.8063
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00