The ANSS event ID is usc000tbk8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000tbk8/executive.
2015/01/04 07:34:13 44.479 -114.176 10.5 3.8 Idaho
USGS/SLU Moment Tensor Solution ENS 2015/01/04 07:34:13:0 44.48 -114.18 10.5 3.8 Idaho Stations used: CN.WALA IM.PD31 IW.DLMT IW.FLWY IW.LOHW IW.MFID IW.MOOW IW.REDW MB.JTMT TA.H17A UO.PINE US.AHID US.BMO US.BOZ US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.HLID US.MSO US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.SPU UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.LTY UW.TREE UW.TUCA UW.UMAT UW.WOLL WY.YHB WY.YHH WY.YHL WY.YMR WY.YNE WY.YNR WY.YPP Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 14 km Plane Strike Dip Rake NP1 150 75 -75 NP2 284 21 -134 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 28 228 N 0.00e+00 14 326 P -6.31e+21 57 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.13e+21 Mxy 2.11e+21 Mxz -2.27e+21 Myy 9.19e+20 Myz -4.78e+21 Mzz -3.05e+21 ############## -##################### ----##-------------######### ---##--------------------##### --######---------------------##### -########-----------------------#### -##########------------------------### -############------------------------### #############-------------------------## ###############------------- ---------## ################------------ P ----------# #################----------- ----------# ##################-----------------------# ##################---------------------- ####################-------------------- ###### ###########------------------ ##### T ############---------------- #### ##############------------- ####################---------- #####################------- #####################- ############## Global CMT Convention Moment Tensor: R T P -3.05e+21 -2.27e+21 4.78e+21 -2.27e+21 2.13e+21 -2.11e+21 4.78e+21 -2.11e+21 9.19e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150104073413/index.html |
STK = 150 DIP = 75 RAKE = -75 MW = 3.80 HS = 14.0
The NDK file is 20150104073413.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2015/01/04 07:34:13:0 44.48 -114.18 10.5 3.8 Idaho Stations used: CN.WALA IM.PD31 IW.DLMT IW.FLWY IW.LOHW IW.MFID IW.MOOW IW.REDW MB.JTMT TA.H17A UO.PINE US.AHID US.BMO US.BOZ US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.HLID US.MSO US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.SPU UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.LTY UW.TREE UW.TUCA UW.UMAT UW.WOLL WY.YHB WY.YHH WY.YHL WY.YMR WY.YNE WY.YNR WY.YPP Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 14 km Plane Strike Dip Rake NP1 150 75 -75 NP2 284 21 -134 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 28 228 N 0.00e+00 14 326 P -6.31e+21 57 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.13e+21 Mxy 2.11e+21 Mxz -2.27e+21 Myy 9.19e+20 Myz -4.78e+21 Mzz -3.05e+21 ############## -##################### ----##-------------######### ---##--------------------##### --######---------------------##### -########-----------------------#### -##########------------------------### -############------------------------### #############-------------------------## ###############------------- ---------## ################------------ P ----------# #################----------- ----------# ##################-----------------------# ##################---------------------- ####################-------------------- ###### ###########------------------ ##### T ############---------------- #### ##############------------- ####################---------- #####################------- #####################- ############## Global CMT Convention Moment Tensor: R T P -3.05e+21 -2.27e+21 4.78e+21 -2.27e+21 2.13e+21 -2.11e+21 4.78e+21 -2.11e+21 9.19e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150104073413/index.html |
Moment 6.66e+14 N-m Magnitude 3.8 Percent DC 97% Depth 12.0 km Updated 2015-01-04 14:17:24 UTC Author us Catalog Contributor us Code us_c000tbk8_mwr Principal Axes Axis Value Plunge Azimuth T 6.695 25 235 N -0.077 5 327 P -6.618 64 69 Nodal Planes Plane Strike Dip Rake NP1 149 70 -84 NP2 313 20 -106 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 45 -90 3.54 0.4106 WVFGRD96 2.0 160 50 -90 3.63 0.4521 WVFGRD96 3.0 350 35 -85 3.68 0.3500 WVFGRD96 4.0 235 15 -5 3.73 0.4037 WVFGRD96 5.0 240 15 0 3.72 0.4625 WVFGRD96 6.0 245 15 5 3.71 0.4989 WVFGRD96 7.0 245 20 5 3.70 0.5185 WVFGRD96 8.0 240 15 -5 3.77 0.5273 WVFGRD96 9.0 315 10 -105 3.77 0.5364 WVFGRD96 10.0 150 80 -80 3.77 0.5617 WVFGRD96 11.0 150 75 -80 3.78 0.5802 WVFGRD96 12.0 150 75 -80 3.79 0.5925 WVFGRD96 13.0 150 75 -80 3.79 0.5996 WVFGRD96 14.0 150 75 -75 3.80 0.6018 WVFGRD96 15.0 150 75 -75 3.80 0.6004 WVFGRD96 16.0 150 80 -75 3.81 0.5967 WVFGRD96 17.0 150 80 -75 3.81 0.5904 WVFGRD96 18.0 150 80 -70 3.82 0.5819 WVFGRD96 19.0 150 80 -70 3.83 0.5720 WVFGRD96 20.0 150 80 -70 3.84 0.5608 WVFGRD96 21.0 150 80 -70 3.85 0.5491 WVFGRD96 22.0 155 85 -70 3.85 0.5352 WVFGRD96 23.0 155 85 -70 3.86 0.5212 WVFGRD96 24.0 155 85 -65 3.87 0.5066 WVFGRD96 25.0 155 85 -65 3.88 0.4913 WVFGRD96 26.0 155 85 -65 3.89 0.4754 WVFGRD96 27.0 155 85 -65 3.89 0.4589 WVFGRD96 28.0 155 90 -65 3.90 0.4422 WVFGRD96 29.0 155 90 -65 3.91 0.4252
The best solution is
WVFGRD96 14.0 150 75 -75 3.80 0.6018
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00