The ANSS event ID is uu60096887 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu60096887/executive.
2014/12/29 06:08:18 39.664 -111.972 4.0 3.65 Utah
USGS/SLU Moment Tensor Solution ENS 2014/12/29 06:08:18:0 39.66 -111.97 4.0 3.7 Utah Stations used: AE.U15A AE.W13A AE.X18A CI.LDF IM.PD31 IW.FLWY IW.LOHW IW.MFID IW.MOOW IW.REDW IW.RWWY IW.SMCO LB.TPH NN.LHV NN.PRN NN.RYN NN.SHP RE.PV04 RE.PV12 RE.PV14 RE.PV16 RE.PV17 RE.PV19 RE.PV22 TA.K22A TA.N23A TA.O20A TA.Q24A TA.R11A TA.S22A TA.W18A US.BW06 US.DUG US.ELK US.HLID US.ISCO US.MVCO US.TPNV UU.BGU UU.BRPU UU.CCUT UU.HVU UU.JLU UU.KNB UU.LCMT UU.MTPU UU.PKCU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.SZCU UU.TCRU UU.TCU UU.TMU UU.VRUT WY.YHH WY.YMP WY.YMR WY.YNR WY.YPP Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 3 km Plane Strike Dip Rake NP1 174 46 -80 NP2 340 45 -100 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 0 257 N 0.00e+00 7 347 P -6.31e+21 83 163 Moment Tensor: (dyne-cm) Component Value Mxx 2.29e+20 Mxy 1.40e+21 Mxz 7.28e+20 Myy 5.98e+21 Myz -2.65e+20 Mzz -6.21e+21 #--########### #####-----############ #######---------############ #######------------########### ########---------------########### ########-----------------########### #########------------------########### #########--------------------########### #########---------------------########## ##########----------------------########## ##########----------------------########## ##########---------- ----------######### #######---------- P ----------######### T ########--------- ----------######## ########----------------------######## ##########---------------------####### ##########--------------------###### ##########------------------###### #########-----------------#### #########---------------#### ########------------## #######------- Global CMT Convention Moment Tensor: R T P -6.21e+21 7.28e+20 2.65e+20 7.28e+20 2.29e+20 -1.40e+21 2.65e+20 -1.40e+21 5.98e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141229060818/index.html |
STK = 340 DIP = 45 RAKE = -100 MW = 3.80 HS = 3.0
The NDK file is 20141229060818.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/12/29 06:08:18:0 39.66 -111.97 4.0 3.7 Utah Stations used: AE.U15A AE.W13A AE.X18A CI.LDF IM.PD31 IW.FLWY IW.LOHW IW.MFID IW.MOOW IW.REDW IW.RWWY IW.SMCO LB.TPH NN.LHV NN.PRN NN.RYN NN.SHP RE.PV04 RE.PV12 RE.PV14 RE.PV16 RE.PV17 RE.PV19 RE.PV22 TA.K22A TA.N23A TA.O20A TA.Q24A TA.R11A TA.S22A TA.W18A US.BW06 US.DUG US.ELK US.HLID US.ISCO US.MVCO US.TPNV UU.BGU UU.BRPU UU.CCUT UU.HVU UU.JLU UU.KNB UU.LCMT UU.MTPU UU.PKCU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.SZCU UU.TCRU UU.TCU UU.TMU UU.VRUT WY.YHH WY.YMP WY.YMR WY.YNR WY.YPP Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 3 km Plane Strike Dip Rake NP1 174 46 -80 NP2 340 45 -100 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 0 257 N 0.00e+00 7 347 P -6.31e+21 83 163 Moment Tensor: (dyne-cm) Component Value Mxx 2.29e+20 Mxy 1.40e+21 Mxz 7.28e+20 Myy 5.98e+21 Myz -2.65e+20 Mzz -6.21e+21 #--########### #####-----############ #######---------############ #######------------########### ########---------------########### ########-----------------########### #########------------------########### #########--------------------########### #########---------------------########## ##########----------------------########## ##########----------------------########## ##########---------- ----------######### #######---------- P ----------######### T ########--------- ----------######## ########----------------------######## ##########---------------------####### ##########--------------------###### ##########------------------###### #########-----------------#### #########---------------#### ########------------## #######------- Global CMT Convention Moment Tensor: R T P -6.21e+21 7.28e+20 2.65e+20 7.28e+20 2.29e+20 -1.40e+21 2.65e+20 -1.40e+21 5.98e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141229060818/index.html |
Moment 7.11e+14 N-m Magnitude 3.8 Percent DC 84% Depth 3.0 km Updated 2014-12-30 02:27:21 UTC Author us Catalog Contributor us Code us_c000taht_mwr Principal Axes Axis Value Plunge Azimuth T 6.834 1 257 N 0.530 14 167 P -7.364 76 350 Nodal Planes Plane Strike Dip Rake NP1 153 47 -110 NP2 1 46 -70 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 180 45 -70 3.65 0.5541 WVFGRD96 2.0 180 45 -70 3.75 0.6934 WVFGRD96 3.0 340 45 -100 3.80 0.6992 WVFGRD96 4.0 175 45 -80 3.83 0.6451 WVFGRD96 5.0 340 65 -95 3.87 0.6063 WVFGRD96 6.0 20 70 -50 3.77 0.5717 WVFGRD96 7.0 220 75 35 3.75 0.5709 WVFGRD96 8.0 -10 65 -80 3.88 0.5764 WVFGRD96 9.0 25 80 -45 3.79 0.5716 WVFGRD96 10.0 25 80 -45 3.80 0.5712 WVFGRD96 11.0 220 70 35 3.81 0.5743 WVFGRD96 12.0 220 70 35 3.82 0.5798 WVFGRD96 13.0 220 70 35 3.82 0.5831 WVFGRD96 14.0 220 70 35 3.83 0.5847 WVFGRD96 15.0 220 70 35 3.84 0.5849 WVFGRD96 16.0 220 70 35 3.85 0.5839 WVFGRD96 17.0 220 70 35 3.85 0.5822 WVFGRD96 18.0 220 70 35 3.86 0.5796 WVFGRD96 19.0 220 70 35 3.87 0.5764 WVFGRD96 20.0 20 70 -35 3.88 0.5730 WVFGRD96 21.0 20 70 -40 3.89 0.5706 WVFGRD96 22.0 20 70 -40 3.90 0.5672 WVFGRD96 23.0 20 70 -40 3.90 0.5631 WVFGRD96 24.0 20 70 -40 3.91 0.5590 WVFGRD96 25.0 20 70 -40 3.92 0.5548 WVFGRD96 26.0 20 70 -40 3.93 0.5499 WVFGRD96 27.0 20 65 -40 3.94 0.5450 WVFGRD96 28.0 20 65 -40 3.95 0.5400 WVFGRD96 29.0 20 65 -40 3.95 0.5345
The best solution is
WVFGRD96 3.0 340 45 -100 3.80 0.6992
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00