The ANSS event ID is ak014fasfc4y and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak014fasfc4y/executive.
2014/11/29 04:14:16 62.724 -150.485 97.1 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/11/29 04:14:16:0 62.72 -150.49 97.1 5.1 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.DHY AK.DOT AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.ISLE AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.MESA AK.PAX AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.TABL AK.TGL AK.TRF AK.WRH AK.YAH AT.TTA IM.IL31 IU.COLA TA.I23K TA.K27K TA.M24K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.35e+23 dyne-cm Mw = 4.95 Z = 106 km Plane Strike Dip Rake NP1 352 66 141 NP2 100 55 30 Principal Axes: Axis Value Plunge Azimuth T 3.35e+23 44 312 N 0.00e+00 45 145 P -3.35e+23 7 48 Moment Tensor: (dyne-cm) Component Value Mxx -7.14e+22 Mxy -2.50e+23 Mxz 8.53e+22 Myy -8.60e+22 Myz -1.54e+23 Mzz 1.57e+23 #####--------- ###########----------- ###############------------- #################------------ ####################----------- P ######## ###########---------- - ######### T ###########--------------- ########## ############--------------- #########################--------------- -##########################--------------- --#########################--------------- ----#######################--------------- ------#####################--------------- -------####################------------# -----------################---------#### ----------------##########-----####### ------------------------############ -----------------------########### ---------------------######### -------------------######### ----------------###### -----------### Global CMT Convention Moment Tensor: R T P 1.57e+23 8.53e+22 1.54e+23 8.53e+22 -7.14e+22 2.50e+23 1.54e+23 2.50e+23 -8.60e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141129041416/index.html |
STK = 100 DIP = 55 RAKE = 30 MW = 4.95 HS = 106.0
The NDK file is 20141129041416.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/11/29 04:14:16:0 62.72 -150.49 97.1 5.1 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.DHY AK.DOT AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.ISLE AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.MESA AK.PAX AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.TABL AK.TGL AK.TRF AK.WRH AK.YAH AT.TTA IM.IL31 IU.COLA TA.I23K TA.K27K TA.M24K TA.N25K TA.O22K TA.POKR Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.35e+23 dyne-cm Mw = 4.95 Z = 106 km Plane Strike Dip Rake NP1 352 66 141 NP2 100 55 30 Principal Axes: Axis Value Plunge Azimuth T 3.35e+23 44 312 N 0.00e+00 45 145 P -3.35e+23 7 48 Moment Tensor: (dyne-cm) Component Value Mxx -7.14e+22 Mxy -2.50e+23 Mxz 8.53e+22 Myy -8.60e+22 Myz -1.54e+23 Mzz 1.57e+23 #####--------- ###########----------- ###############------------- #################------------ ####################----------- P ######## ###########---------- - ######### T ###########--------------- ########## ############--------------- #########################--------------- -##########################--------------- --#########################--------------- ----#######################--------------- ------#####################--------------- -------####################------------# -----------################---------#### ----------------##########-----####### ------------------------############ -----------------------########### ---------------------######### -------------------######### ----------------###### -----------### Global CMT Convention Moment Tensor: R T P 1.57e+23 8.53e+22 1.54e+23 8.53e+22 -7.14e+22 2.50e+23 1.54e+23 2.50e+23 -8.60e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141129041416/index.html |
Moment 3.34e+16 N-m Magnitude 4.9 Percent DC 81% Depth 99.0 km Updated 2014-11-29 05:28:59 UTC Author us Catalog us Contributor Code us_b000t12u_mwr Principal Axes Axis Value Plunge Azimuth T 3.492 47 310 N -0.320 42 146 P -3.173 8 48 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 145 45 -95 4.16 0.2667 WVFGRD96 4.0 170 45 -55 4.21 0.2358 WVFGRD96 6.0 5 45 -20 4.20 0.2498 WVFGRD96 8.0 5 45 -20 4.26 0.2704 WVFGRD96 10.0 10 50 -10 4.27 0.2815 WVFGRD96 12.0 10 50 -5 4.28 0.2905 WVFGRD96 14.0 15 50 10 4.30 0.2974 WVFGRD96 16.0 15 55 10 4.32 0.3021 WVFGRD96 18.0 300 60 45 4.34 0.3066 WVFGRD96 20.0 300 60 45 4.35 0.3127 WVFGRD96 22.0 295 60 40 4.38 0.3169 WVFGRD96 24.0 110 85 35 4.40 0.3209 WVFGRD96 26.0 110 80 35 4.42 0.3248 WVFGRD96 28.0 110 80 35 4.43 0.3281 WVFGRD96 30.0 105 85 30 4.46 0.3302 WVFGRD96 32.0 105 90 30 4.48 0.3332 WVFGRD96 34.0 105 90 30 4.49 0.3351 WVFGRD96 36.0 105 90 30 4.51 0.3354 WVFGRD96 38.0 285 85 -25 4.55 0.3388 WVFGRD96 40.0 285 90 -35 4.62 0.3407 WVFGRD96 42.0 285 85 -35 4.63 0.3415 WVFGRD96 44.0 285 90 -30 4.65 0.3418 WVFGRD96 46.0 105 90 30 4.66 0.3421 WVFGRD96 48.0 105 80 30 4.68 0.3440 WVFGRD96 50.0 100 65 -15 4.71 0.3505 WVFGRD96 52.0 100 65 -15 4.72 0.3585 WVFGRD96 54.0 100 65 -15 4.74 0.3660 WVFGRD96 56.0 100 45 25 4.77 0.3881 WVFGRD96 58.0 100 45 25 4.79 0.4074 WVFGRD96 60.0 100 50 30 4.80 0.4294 WVFGRD96 62.0 100 50 30 4.82 0.4544 WVFGRD96 64.0 100 50 30 4.83 0.4812 WVFGRD96 66.0 100 50 30 4.85 0.5080 WVFGRD96 68.0 105 45 35 4.86 0.5341 WVFGRD96 70.0 100 50 30 4.87 0.5591 WVFGRD96 72.0 100 50 30 4.88 0.5853 WVFGRD96 74.0 100 50 30 4.89 0.6113 WVFGRD96 76.0 105 50 35 4.90 0.6354 WVFGRD96 78.0 105 50 35 4.91 0.6589 WVFGRD96 80.0 105 50 35 4.91 0.6797 WVFGRD96 82.0 105 50 35 4.92 0.6986 WVFGRD96 84.0 105 50 35 4.93 0.7149 WVFGRD96 86.0 105 50 35 4.93 0.7288 WVFGRD96 88.0 105 50 35 4.93 0.7408 WVFGRD96 90.0 105 50 35 4.93 0.7501 WVFGRD96 92.0 105 50 35 4.94 0.7577 WVFGRD96 94.0 105 50 35 4.94 0.7636 WVFGRD96 96.0 105 50 35 4.94 0.7676 WVFGRD96 98.0 105 50 35 4.94 0.7705 WVFGRD96 100.0 105 50 35 4.94 0.7720 WVFGRD96 102.0 105 50 35 4.94 0.7726 WVFGRD96 104.0 100 55 30 4.95 0.7728 WVFGRD96 106.0 100 55 30 4.95 0.7733 WVFGRD96 108.0 100 55 30 4.95 0.7731 WVFGRD96 110.0 100 55 30 4.95 0.7719 WVFGRD96 112.0 100 55 30 4.95 0.7698 WVFGRD96 114.0 100 55 30 4.95 0.7672 WVFGRD96 116.0 100 55 30 4.95 0.7642 WVFGRD96 118.0 100 55 30 4.95 0.7611
The best solution is
WVFGRD96 106.0 100 55 30 4.95 0.7733
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00