The ANSS event ID is se610672 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/se610672/executive.
2014/11/20 10:25:31 32.949 -87.987 0.0 3.8 Alabama
USGS/SLU Moment Tensor Solution
ENS 2014/11/20 10:25:31:0 32.95 -87.99 0.0 3.8 Alabama
Stations used:
AG.CCAR AG.FCAR AG.LCAR CO.CASEE CO.HODGE ET.CPCT ET.FPAL
ET.SWET IM.TKL IU.WVT N4.143B N4.146B N4.152A N4.154A
N4.250A N4.255A N4.352A N4.451A N4.S44A N4.T42B N4.T45B
N4.T47A N4.T50A N4.V48A N4.V52A N4.V53A N4.W45B N4.W50A
N4.W52A N4.X48A N4.X51A N4.Y45B N4.Y49A N4.Y52A N4.Z47B
N4.Z51A NM.FVM NM.GNAR NM.HALT NM.HBAR NM.HENM NM.HICK
NM.LNXT NM.LPAR NM.MPH NM.PARM NM.PBMO NM.PEBM NM.PENM
NM.PLAL NM.PVMO NM.UALR NM.USIN NM.UTMT TA.TIGA TA.U40A
TA.W39A TA.X40A TA.X43A US.BRAL US.GOGA US.LRAL US.OXF
US.TZTN US.VBMS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 5.31e+21 dyne-cm
Mw = 3.75
Z = 5 km
Plane Strike Dip Rake
NP1 211 85 -170
NP2 120 80 -5
Principal Axes:
Axis Value Plunge Azimuth
T 5.31e+21 4 345
N 0.00e+00 79 237
P -5.31e+21 11 76
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.63e+21
Mxy -2.54e+21
Mxz 8.26e+19
Myy -4.47e+21
Myz -1.01e+21
Mzz -1.58e+20
T ###########
#### ##############-
#######################-----
#######################-------
#######################-----------
#######################-------------
---####################---------------
------#################--------------
--------#############---------------- P
------------#########----------------- -
---------------#####----------------------
------------------#-----------------------
------------------###---------------------
----------------#######-----------------
---------------############-------------
-------------#################--------
-----------########################-
---------#########################
------########################
----########################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-1.58e+20 8.26e+19 1.01e+21
8.26e+19 4.63e+21 2.54e+21
1.01e+21 2.54e+21 -4.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141120102531/index.html
|
STK = 120
DIP = 80
RAKE = -5
MW = 3.75
HS = 5.0
The NDK file is 20141120102531.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2014/11/20 10:25:31:0 32.95 -87.99 0.0 3.8 Alabama
Stations used:
AG.CCAR AG.FCAR AG.LCAR CO.CASEE CO.HODGE ET.CPCT ET.FPAL
ET.SWET IM.TKL IU.WVT N4.143B N4.146B N4.152A N4.154A
N4.250A N4.255A N4.352A N4.451A N4.S44A N4.T42B N4.T45B
N4.T47A N4.T50A N4.V48A N4.V52A N4.V53A N4.W45B N4.W50A
N4.W52A N4.X48A N4.X51A N4.Y45B N4.Y49A N4.Y52A N4.Z47B
N4.Z51A NM.FVM NM.GNAR NM.HALT NM.HBAR NM.HENM NM.HICK
NM.LNXT NM.LPAR NM.MPH NM.PARM NM.PBMO NM.PEBM NM.PENM
NM.PLAL NM.PVMO NM.UALR NM.USIN NM.UTMT TA.TIGA TA.U40A
TA.W39A TA.X40A TA.X43A US.BRAL US.GOGA US.LRAL US.OXF
US.TZTN US.VBMS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 5.31e+21 dyne-cm
Mw = 3.75
Z = 5 km
Plane Strike Dip Rake
NP1 211 85 -170
NP2 120 80 -5
Principal Axes:
Axis Value Plunge Azimuth
T 5.31e+21 4 345
N 0.00e+00 79 237
P -5.31e+21 11 76
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.63e+21
Mxy -2.54e+21
Mxz 8.26e+19
Myy -4.47e+21
Myz -1.01e+21
Mzz -1.58e+20
T ###########
#### ##############-
#######################-----
#######################-------
#######################-----------
#######################-------------
---####################---------------
------#################--------------
--------#############---------------- P
------------#########----------------- -
---------------#####----------------------
------------------#-----------------------
------------------###---------------------
----------------#######-----------------
---------------############-------------
-------------#################--------
-----------########################-
---------#########################
------########################
----########################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-1.58e+20 8.26e+19 1.01e+21
8.26e+19 4.63e+21 2.54e+21
1.01e+21 2.54e+21 -4.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141120102531/index.html
|
Moment 5.52e+14 N-m Magnitude 3.8 Percent DC 90% Depth 5.0 km Updated 2014-11-20 11:24:30 UTC Author us Catalog us Contributor Code us_b000sy7g_mwr Principal Axes Axis Value Plunge Azimuth T 5.652 5 344 N -0.269 84 204 P -5.383 4 74 Nodal Planes Plane Strike Dip Rake NP1 29 89 174 NP2 119 84 1 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 120 90 0 3.51 0.4326
WVFGRD96 2.0 120 80 -10 3.63 0.5586
WVFGRD96 3.0 120 85 -10 3.68 0.6086
WVFGRD96 4.0 120 80 -5 3.72 0.6304
WVFGRD96 5.0 120 80 -5 3.75 0.6352
WVFGRD96 6.0 120 70 -5 3.78 0.6322
WVFGRD96 7.0 120 70 0 3.80 0.6285
WVFGRD96 8.0 120 65 -5 3.83 0.6253
WVFGRD96 9.0 120 65 -5 3.84 0.6161
WVFGRD96 10.0 120 65 -5 3.85 0.6085
WVFGRD96 11.0 120 65 0 3.86 0.6015
WVFGRD96 12.0 120 70 -5 3.87 0.5946
WVFGRD96 13.0 120 70 0 3.88 0.5849
WVFGRD96 14.0 120 70 0 3.89 0.5723
WVFGRD96 15.0 120 70 -5 3.90 0.5574
WVFGRD96 16.0 120 70 -5 3.91 0.5417
WVFGRD96 17.0 120 70 -5 3.91 0.5248
WVFGRD96 18.0 120 70 -5 3.92 0.5067
WVFGRD96 19.0 120 70 0 3.93 0.4874
WVFGRD96 20.0 120 70 0 3.94 0.4677
WVFGRD96 21.0 120 70 0 3.94 0.4473
WVFGRD96 22.0 120 70 0 3.95 0.4262
WVFGRD96 23.0 120 70 0 3.95 0.4052
WVFGRD96 24.0 120 65 0 3.95 0.3842
WVFGRD96 25.0 35 70 20 3.95 0.3722
WVFGRD96 26.0 30 70 15 3.96 0.3647
WVFGRD96 27.0 30 75 15 3.97 0.3585
WVFGRD96 28.0 30 70 10 3.98 0.3548
WVFGRD96 29.0 30 75 10 3.99 0.3539
The best solution is
WVFGRD96 5.0 120 80 -5 3.75 0.6352
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00