The ANSS event ID is ak014cn5hnbt and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak014cn5hnbt/executive.
2014/10/02 21:33:15 63.055 -150.775 123.6 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/10/02 21:33:15:0 63.06 -150.77 123.6 4.3 Alaska Stations used: AK.BPAW AK.BWN AK.CRQ AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.PAX AK.PPLA AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.TRF AK.WRH IM.IL31 IU.COLA TA.M24K Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 122 km Plane Strike Dip Rake NP1 50 70 85 NP2 244 21 103 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 65 312 N 0.00e+00 5 52 P -3.55e+22 25 144 Moment Tensor: (dyne-cm) Component Value Mxx -1.62e+22 Mxy 1.07e+22 Mxz 2.01e+22 Myy -6.53e+21 Myz -1.82e+22 Mzz 2.27e+22 -------------- ---------------------- --------################---- ------#######################- -----############################# ----#############################--- ----#############################----- ---########### ################------- --############ T ##############--------- ---############ #############----------- --###########################------------- --##########################-------------- --########################---------------- -#####################------------------ -###################-------------------- ################---------------------- ############-------------- ------- #######------------------ P ------ ----------------------- ---- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.27e+22 2.01e+22 1.82e+22 2.01e+22 -1.62e+22 -1.07e+22 1.82e+22 -1.07e+22 -6.53e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20141002213315/index.html |
STK = 50 DIP = 70 RAKE = 85 MW = 4.30 HS = 122.0
The NDK file is 20141002213315.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 240 50 -90 3.48 0.1780 WVFGRD96 4.0 70 35 -75 3.58 0.1646 WVFGRD96 6.0 60 30 -80 3.58 0.1381 WVFGRD96 8.0 60 30 -80 3.66 0.1560 WVFGRD96 10.0 70 30 -70 3.63 0.1468 WVFGRD96 12.0 30 30 75 3.64 0.1634 WVFGRD96 14.0 30 40 75 3.67 0.1840 WVFGRD96 16.0 30 40 70 3.67 0.2019 WVFGRD96 18.0 30 45 70 3.69 0.2154 WVFGRD96 20.0 30 45 70 3.70 0.2257 WVFGRD96 22.0 30 45 70 3.71 0.2317 WVFGRD96 24.0 30 45 70 3.72 0.2352 WVFGRD96 26.0 30 45 70 3.73 0.2365 WVFGRD96 28.0 25 45 65 3.74 0.2358 WVFGRD96 30.0 25 45 65 3.75 0.2337 WVFGRD96 32.0 25 45 65 3.76 0.2302 WVFGRD96 34.0 30 40 70 3.77 0.2255 WVFGRD96 36.0 10 40 65 3.79 0.2199 WVFGRD96 38.0 20 55 75 3.82 0.2155 WVFGRD96 40.0 20 60 80 3.97 0.2142 WVFGRD96 42.0 25 60 85 3.99 0.2151 WVFGRD96 44.0 25 60 80 3.99 0.2159 WVFGRD96 46.0 30 55 80 4.00 0.2169 WVFGRD96 48.0 25 60 75 4.00 0.2201 WVFGRD96 50.0 25 60 70 4.01 0.2241 WVFGRD96 52.0 10 60 25 4.00 0.2331 WVFGRD96 54.0 15 60 30 4.01 0.2457 WVFGRD96 56.0 15 60 25 4.04 0.2597 WVFGRD96 58.0 15 60 25 4.06 0.2753 WVFGRD96 60.0 20 60 25 4.07 0.2929 WVFGRD96 62.0 35 75 80 4.10 0.3248 WVFGRD96 64.0 35 75 80 4.12 0.3609 WVFGRD96 66.0 40 70 80 4.14 0.3976 WVFGRD96 68.0 40 75 75 4.15 0.4351 WVFGRD96 70.0 45 70 80 4.17 0.4686 WVFGRD96 72.0 45 70 80 4.18 0.4937 WVFGRD96 74.0 45 70 80 4.19 0.5106 WVFGRD96 76.0 45 70 85 4.20 0.5269 WVFGRD96 78.0 240 20 100 4.21 0.5416 WVFGRD96 80.0 45 70 85 4.22 0.5575 WVFGRD96 82.0 240 20 100 4.22 0.5720 WVFGRD96 84.0 50 70 85 4.23 0.5836 WVFGRD96 86.0 50 70 85 4.23 0.5966 WVFGRD96 88.0 50 70 90 4.24 0.6071 WVFGRD96 90.0 50 70 90 4.25 0.6170 WVFGRD96 92.0 50 70 90 4.25 0.6258 WVFGRD96 94.0 50 65 80 4.25 0.6327 WVFGRD96 96.0 50 65 80 4.25 0.6423 WVFGRD96 98.0 50 65 80 4.26 0.6498 WVFGRD96 100.0 50 65 80 4.26 0.6567 WVFGRD96 102.0 50 65 80 4.27 0.6623 WVFGRD96 104.0 50 65 80 4.27 0.6673 WVFGRD96 106.0 50 70 85 4.28 0.6717 WVFGRD96 108.0 50 70 85 4.28 0.6754 WVFGRD96 110.0 50 70 85 4.28 0.6788 WVFGRD96 112.0 50 70 85 4.29 0.6814 WVFGRD96 114.0 50 70 85 4.29 0.6838 WVFGRD96 116.0 50 70 85 4.29 0.6848 WVFGRD96 118.0 50 70 85 4.29 0.6864 WVFGRD96 120.0 50 70 85 4.30 0.6864 WVFGRD96 122.0 50 70 85 4.30 0.6867 WVFGRD96 124.0 235 20 95 4.30 0.6856 WVFGRD96 126.0 235 20 95 4.31 0.6847 WVFGRD96 128.0 50 70 85 4.30 0.6842 WVFGRD96 130.0 50 70 85 4.31 0.6822 WVFGRD96 132.0 50 70 85 4.31 0.6816 WVFGRD96 134.0 50 70 85 4.31 0.6793 WVFGRD96 136.0 50 70 85 4.31 0.6775 WVFGRD96 138.0 55 70 90 4.32 0.6751 WVFGRD96 140.0 240 20 95 4.32 0.6731 WVFGRD96 142.0 240 20 95 4.32 0.6709 WVFGRD96 144.0 55 70 90 4.33 0.6673 WVFGRD96 146.0 55 70 90 4.33 0.6648 WVFGRD96 148.0 55 70 90 4.33 0.6619
The best solution is
WVFGRD96 122.0 50 70 85 4.30 0.6867
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00