The ANSS event ID is ak014cbigci8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak014cbigci8/executive.
2014/09/25 17:51:17 61.945 -151.816 108.9 6.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/09/25 17:51:17:0 61.94 -151.82 108.9 6.2 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.COLD AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.KAI AK.KLU AK.KTH AK.MCAR AK.MCK AK.MDM AK.MESA AK.PAX AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SWD AK.TGL AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MENT AT.PMR AT.SVW2 AT.TTA IU.COLA TA.M24K Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 2.69e+25 dyne-cm Mw = 6.22 Z = 104 km Plane Strike Dip Rake NP1 310 76 159 NP2 45 70 15 Principal Axes: Axis Value Plunge Azimuth T 2.69e+25 24 266 N 0.00e+00 65 97 P -2.69e+25 4 358 Moment Tensor: (dyne-cm) Component Value Mxx -2.67e+25 Mxy 2.24e+24 Mxz -2.51e+24 Myy 2.22e+25 Myz -1.01e+25 Mzz 4.48e+24 ----- P ------ --------- ---------- ---------------------------- ------------------------------ #####--------------------------### ##########---------------------##### ##############------------------###### #################---------------######## ####################----------########## #######################-------############ #### ##################----############# #### T ################################### #### ##################----############# #######################-------########## #####################-----------######## #################---------------###### ##############------------------#### ##########----------------------## ###--------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.48e+24 -2.51e+24 1.01e+25 -2.51e+24 -2.67e+25 -2.24e+24 1.01e+25 -2.24e+24 2.22e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140925175117/index.html |
STK = 45 DIP = 70 RAKE = 15 MW = 6.22 HS = 104.0
The NDK file is 20140925175117.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/09/25 17:51:17:0 61.94 -151.82 108.9 6.2 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.COLD AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.KAI AK.KLU AK.KTH AK.MCAR AK.MCK AK.MDM AK.MESA AK.PAX AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SWD AK.TGL AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MENT AT.PMR AT.SVW2 AT.TTA IU.COLA TA.M24K Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 2.69e+25 dyne-cm Mw = 6.22 Z = 104 km Plane Strike Dip Rake NP1 310 76 159 NP2 45 70 15 Principal Axes: Axis Value Plunge Azimuth T 2.69e+25 24 266 N 0.00e+00 65 97 P -2.69e+25 4 358 Moment Tensor: (dyne-cm) Component Value Mxx -2.67e+25 Mxy 2.24e+24 Mxz -2.51e+24 Myy 2.22e+25 Myz -1.01e+25 Mzz 4.48e+24 ----- P ------ --------- ---------- ---------------------------- ------------------------------ #####--------------------------### ##########---------------------##### ##############------------------###### #################---------------######## ####################----------########## #######################-------############ #### ##################----############# #### T ################################### #### ##################----############# #######################-------########## #####################-----------######## #################---------------###### ##############------------------#### ##########----------------------## ###--------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.48e+24 -2.51e+24 1.01e+25 -2.51e+24 -2.67e+25 -2.24e+24 1.01e+25 -2.24e+24 2.22e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140925175117/index.html |
|
CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201409251751A DATA: II LD IU G DK CU MN IC GE XF KP L.P.BODY WAVES:179S, 431C, T= 40 MANTLE WAVES: 144S, 244C, T=125 SURFACE WAVES: 177S, 419C, T= 50 TIMESTAMP: Q-20140926082604 CENTROID LOCATION: ORIGIN TIME: 17:51:22.7 0.1 LAT:62.02N 0.00;LON:151.80W 0.01 DEP:111.6 0.3;TRIANG HDUR: 3.5 MOMENT TENSOR: SCALE 10**25 D-CM RR= 0.274 0.013; TT=-3.560 0.016 PP= 3.280 0.016; RT=-0.299 0.012 RP= 1.000 0.011; TP= 0.139 0.014 PRINCIPAL AXES: 1.(T) VAL= 3.583;PLG=17;AZM=270 2.(N) 0.002; 72; 108 3.(P) -3.590; 5; 2 BEST DBLE.COUPLE:M0= 3.59*10**25 NP1: STRIKE= 47;DIP=75;SLIP= 9 NP2: STRIKE=315;DIP=82;SLIP= 164 ----- P --- --------- ------- ----------------------- ####---------------------## ########-----------------#### ###########--------------###### #############-----------####### # ############-------########## # T ##############----########### # ############################# ##################---############ ###############-------######### #############-----------####### #########---------------##### ####--------------------### ----------------------- ------------------- ----------- |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.04 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 125 75 -35 5.44 0.2496 WVFGRD96 4.0 130 75 -20 5.47 0.2718 WVFGRD96 6.0 130 80 -10 5.49 0.2803 WVFGRD96 8.0 135 85 -10 5.55 0.2850 WVFGRD96 10.0 135 80 -5 5.57 0.2748 WVFGRD96 12.0 135 65 15 5.58 0.2606 WVFGRD96 14.0 135 65 15 5.59 0.2569 WVFGRD96 16.0 135 70 20 5.60 0.2563 WVFGRD96 18.0 135 65 15 5.61 0.2571 WVFGRD96 20.0 135 65 15 5.62 0.2587 WVFGRD96 22.0 35 65 -10 5.62 0.2610 WVFGRD96 24.0 35 60 -10 5.64 0.2698 WVFGRD96 26.0 35 65 -10 5.66 0.2789 WVFGRD96 28.0 35 65 -10 5.68 0.2893 WVFGRD96 30.0 35 65 -10 5.70 0.2998 WVFGRD96 32.0 35 65 -10 5.72 0.3112 WVFGRD96 34.0 35 65 -10 5.74 0.3245 WVFGRD96 36.0 35 70 -10 5.77 0.3395 WVFGRD96 38.0 40 75 -5 5.83 0.3611 WVFGRD96 40.0 40 70 -5 5.89 0.3895 WVFGRD96 42.0 40 70 -5 5.91 0.4075 WVFGRD96 44.0 40 70 -5 5.93 0.4257 WVFGRD96 46.0 40 75 -10 5.96 0.4450 WVFGRD96 48.0 40 75 -10 5.98 0.4644 WVFGRD96 50.0 40 75 -5 5.99 0.4838 WVFGRD96 52.0 40 75 -5 6.01 0.5037 WVFGRD96 54.0 40 75 -5 6.03 0.5230 WVFGRD96 56.0 40 75 -5 6.04 0.5419 WVFGRD96 58.0 40 75 -5 6.06 0.5600 WVFGRD96 60.0 40 75 0 6.07 0.5778 WVFGRD96 62.0 40 75 0 6.08 0.5951 WVFGRD96 64.0 40 75 0 6.10 0.6122 WVFGRD96 66.0 40 75 0 6.11 0.6286 WVFGRD96 68.0 40 75 5 6.12 0.6443 WVFGRD96 70.0 40 75 5 6.13 0.6614 WVFGRD96 72.0 40 75 5 6.14 0.6772 WVFGRD96 74.0 45 75 5 6.16 0.6926 WVFGRD96 76.0 45 75 5 6.17 0.7074 WVFGRD96 78.0 45 75 5 6.17 0.7208 WVFGRD96 80.0 45 75 5 6.18 0.7324 WVFGRD96 82.0 45 75 10 6.19 0.7445 WVFGRD96 84.0 45 75 10 6.19 0.7552 WVFGRD96 86.0 45 75 10 6.20 0.7644 WVFGRD96 88.0 45 70 10 6.20 0.7728 WVFGRD96 90.0 45 70 10 6.20 0.7791 WVFGRD96 92.0 45 70 10 6.21 0.7852 WVFGRD96 94.0 45 70 10 6.21 0.7900 WVFGRD96 96.0 45 70 10 6.22 0.7936 WVFGRD96 98.0 45 70 10 6.22 0.7961 WVFGRD96 100.0 45 70 15 6.22 0.7973 WVFGRD96 102.0 45 70 15 6.22 0.7986 WVFGRD96 104.0 45 70 15 6.22 0.7995 WVFGRD96 106.0 45 70 15 6.23 0.7993 WVFGRD96 108.0 45 70 15 6.23 0.7984 WVFGRD96 110.0 45 70 15 6.23 0.7960 WVFGRD96 112.0 45 70 15 6.23 0.7939 WVFGRD96 114.0 45 70 15 6.23 0.7909 WVFGRD96 116.0 45 70 15 6.23 0.7877 WVFGRD96 118.0 45 70 15 6.24 0.7839 WVFGRD96 120.0 45 70 20 6.23 0.7804 WVFGRD96 122.0 45 70 20 6.23 0.7763 WVFGRD96 124.0 45 70 20 6.23 0.7722 WVFGRD96 126.0 45 70 20 6.23 0.7678 WVFGRD96 128.0 45 70 20 6.24 0.7627 WVFGRD96 130.0 45 70 20 6.24 0.7578 WVFGRD96 132.0 45 70 20 6.24 0.7524 WVFGRD96 134.0 45 70 20 6.24 0.7468 WVFGRD96 136.0 45 70 20 6.24 0.7414 WVFGRD96 138.0 45 70 20 6.24 0.7356
The best solution is
WVFGRD96 104.0 45 70 15 6.22 0.7995
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.04 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00