The ANSS event ID is usb000ry6y and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usb000ry6y/executive.
2014/07/29 02:46:36 36.756 -98.045 5.3 4.3 Oklahoma
USGS/SLU Moment Tensor Solution
ENS 2014/07/29 02:46:36:0 36.76 -98.04 5.3 4.3 Oklahoma
Stations used:
AG.FCAR AG.HHAR AG.WHAR AG.WLAR GS.KAN10 GS.KAN12 GS.KAN13
GS.OK025 GS.OK026 GS.OK027 GS.OK028 GS.OK029 N4.237B
N4.L34B N4.N33B N4.N35B N4.P38B N4.R32B N4.R40B N4.S39B
N4.U38B N4.Z35B N4.Z38B NM.MGMO NM.UALR OK.BCOK OK.CROK
OK.FNO OK.U32A OK.X37A TA.ABTX TA.BGNE TA.KSCO TA.MSTX
TA.T25A TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX US.AMTX
US.CBKS US.KSU1 US.MIAR US.WMOK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 3.09e+22 dyne-cm
Mw = 4.26
Z = 3 km
Plane Strike Dip Rake
NP1 305 65 -40
NP2 55 54 -149
Principal Axes:
Axis Value Plunge Azimuth
T 3.09e+22 6 2
N 0.00e+00 44 98
P -3.09e+22 45 265
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.04e+22
Mxy -1.89e+20
Mxz 4.72e+21
Myy -1.52e+22
Myz 1.55e+22
Mzz -1.52e+22
###### T #####
########## #########
############################
##############################
#--###############################
------------#######################-
------------------##################--
----------------------##############----
------------------------###########-----
----------------------------#######-------
-------- -------------------####--------
-------- P ---------------------#---------
-------- --------------------##---------
-----------------------------#####------
--------------------------#########-----
-----------------------############---
------------------#################-
-------------#####################
##############################
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-1.52e+22 4.72e+21 -1.55e+22
4.72e+21 3.04e+22 1.89e+20
-1.55e+22 1.89e+20 -1.52e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140729024636/index.html
|
STK = 305
DIP = 65
RAKE = -40
MW = 4.26
HS = 3.0
The NDK file is 20140729024636.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2014/07/29 02:46:36:0 36.76 -98.04 5.3 4.3 Oklahoma
Stations used:
AG.FCAR AG.HHAR AG.WHAR AG.WLAR GS.KAN10 GS.KAN12 GS.KAN13
GS.OK025 GS.OK026 GS.OK027 GS.OK028 GS.OK029 N4.237B
N4.L34B N4.N33B N4.N35B N4.P38B N4.R32B N4.R40B N4.S39B
N4.U38B N4.Z35B N4.Z38B NM.MGMO NM.UALR OK.BCOK OK.CROK
OK.FNO OK.U32A OK.X37A TA.ABTX TA.BGNE TA.KSCO TA.MSTX
TA.T25A TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX US.AMTX
US.CBKS US.KSU1 US.MIAR US.WMOK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 3.09e+22 dyne-cm
Mw = 4.26
Z = 3 km
Plane Strike Dip Rake
NP1 305 65 -40
NP2 55 54 -149
Principal Axes:
Axis Value Plunge Azimuth
T 3.09e+22 6 2
N 0.00e+00 44 98
P -3.09e+22 45 265
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.04e+22
Mxy -1.89e+20
Mxz 4.72e+21
Myy -1.52e+22
Myz 1.55e+22
Mzz -1.52e+22
###### T #####
########## #########
############################
##############################
#--###############################
------------#######################-
------------------##################--
----------------------##############----
------------------------###########-----
----------------------------#######-------
-------- -------------------####--------
-------- P ---------------------#---------
-------- --------------------##---------
-----------------------------#####------
--------------------------#########-----
-----------------------############---
------------------#################-
-------------#####################
##############################
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-1.52e+22 4.72e+21 -1.55e+22
4.72e+21 3.04e+22 1.89e+20
-1.55e+22 1.89e+20 -1.52e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140729024636/index.html
|
Regional Moment Tensor (Mwr)
Moment magnitude derived from a moment tensor
inversion of complete waveforms at regional distances
(less than ~8 degrees), generally used for the
analysis of small to moderate size earthquakes
(typically Mw 3.5-6.0) crust or upper mantle earthquakes.
Moment
3.28e+15 N-m
Magnitude
4.3
Percent DC
81%
Depth
3.0 km
Updated
2014-07-29 03:40:31 UTC
Author
us
Catalog
us
Contributor
us
Code
us_b000ry6y_mwr
Principal Axes
Axis Value Plunge Azimuth
T 3.425 3 356
N -0.313 52 263
P -3.112 38 88
Nodal Planes
Plane Strike Dip Rake
NP1 229 66 -149
NP2 125 62 -27
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 130 70 -25 4.10 0.5185
WVFGRD96 2.0 310 65 -35 4.19 0.5939
WVFGRD96 3.0 305 65 -40 4.26 0.6245
WVFGRD96 4.0 125 70 -30 4.28 0.6037
WVFGRD96 5.0 130 85 -10 4.28 0.5678
WVFGRD96 6.0 130 90 -15 4.30 0.5349
WVFGRD96 7.0 130 90 -20 4.31 0.5127
WVFGRD96 8.0 130 90 -30 4.34 0.4985
WVFGRD96 9.0 315 75 25 4.35 0.4878
WVFGRD96 10.0 315 75 25 4.35 0.4769
WVFGRD96 11.0 140 70 30 4.36 0.4689
WVFGRD96 12.0 140 70 30 4.36 0.4699
WVFGRD96 13.0 140 70 30 4.37 0.4690
WVFGRD96 14.0 140 70 25 4.37 0.4666
WVFGRD96 15.0 145 65 25 4.37 0.4629
WVFGRD96 16.0 145 65 25 4.37 0.4584
WVFGRD96 17.0 145 65 25 4.38 0.4527
WVFGRD96 18.0 140 60 15 4.38 0.4463
WVFGRD96 19.0 145 60 25 4.38 0.4403
WVFGRD96 20.0 145 60 25 4.39 0.4337
WVFGRD96 21.0 145 60 25 4.40 0.4258
WVFGRD96 22.0 145 55 20 4.39 0.4185
WVFGRD96 23.0 145 55 20 4.40 0.4108
WVFGRD96 24.0 145 55 20 4.40 0.4031
WVFGRD96 25.0 140 55 15 4.41 0.3951
WVFGRD96 26.0 140 55 15 4.41 0.3874
WVFGRD96 27.0 140 55 10 4.41 0.3798
WVFGRD96 28.0 140 55 10 4.42 0.3725
WVFGRD96 29.0 140 55 10 4.42 0.3655
The best solution is
WVFGRD96 3.0 305 65 -40 4.26 0.6245
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00