The ANSS event ID is usb000rtp6 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usb000rtp6/executive.
2014/07/17 11:49:37 60.300 -140.337 10.0 6 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/07/17 11:49:37:0 60.30 -140.34 10.0 6.0 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.ISLE AK.JIS AK.KAI AK.KLU AK.KNK AK.MCAR AK.MCK AK.MESA AK.RAG AK.RND AK.SAW AK.SCM AK.SSN AK.TABL AK.TGL AK.VRDI AK.YAH AT.MENT AT.PMR AT.SKAG AT.YKU2 CN.DAWY CN.HYT CN.WHY US.EGAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.50e+24 dyne-cm Mw = 5.85 Z = 12 km Plane Strike Dip Rake NP1 10 90 25 NP2 280 65 180 Principal Axes: Axis Value Plunge Azimuth T 7.50e+24 17 238 N 0.00e+00 65 10 P -7.50e+24 17 142 Moment Tensor: (dyne-cm) Component Value Mxx -2.32e+24 Mxy 6.39e+24 Mxz 5.50e+23 Myy 2.32e+24 Myz -3.12e+24 Mzz -2.77e+17 ----------#### --------------######## -----------------########### -----------------############# -------------------############### --------------------################ --------------------################## -------#############-################### -####################-------############ #####################------------######### #####################---------------###### #####################------------------### #####################--------------------# ###################--------------------- ###################--------------------- ### ############-------------------- ## T ###########-------------------- # ###########----------- ----- #############----------- P --- ###########------------ -- ########-------------- ####---------- Global CMT Convention Moment Tensor: R T P -2.77e+17 5.50e+23 3.12e+24 5.50e+23 -2.32e+24 -6.39e+24 3.12e+24 -6.39e+24 2.32e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140717114937/index.html |
STK = 10 DIP = 90 RAKE = 25 MW = 5.85 HS = 12.0
The NDK file is 20140717114937.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/07/17 11:49:37:0 60.30 -140.34 10.0 6.0 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.ISLE AK.JIS AK.KAI AK.KLU AK.KNK AK.MCAR AK.MCK AK.MESA AK.RAG AK.RND AK.SAW AK.SCM AK.SSN AK.TABL AK.TGL AK.VRDI AK.YAH AT.MENT AT.PMR AT.SKAG AT.YKU2 CN.DAWY CN.HYT CN.WHY US.EGAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.50e+24 dyne-cm Mw = 5.85 Z = 12 km Plane Strike Dip Rake NP1 10 90 25 NP2 280 65 180 Principal Axes: Axis Value Plunge Azimuth T 7.50e+24 17 238 N 0.00e+00 65 10 P -7.50e+24 17 142 Moment Tensor: (dyne-cm) Component Value Mxx -2.32e+24 Mxy 6.39e+24 Mxz 5.50e+23 Myy 2.32e+24 Myz -3.12e+24 Mzz -2.77e+17 ----------#### --------------######## -----------------########### -----------------############# -------------------############### --------------------################ --------------------################## -------#############-################### -####################-------############ #####################------------######### #####################---------------###### #####################------------------### #####################--------------------# ###################--------------------- ###################--------------------- ### ############-------------------- ## T ###########-------------------- # ###########----------- ----- #############----------- P --- ###########------------ -- ########-------------- ####---------- Global CMT Convention Moment Tensor: R T P -2.77e+17 5.50e+23 3.12e+24 5.50e+23 -2.32e+24 -6.39e+24 3.12e+24 -6.39e+24 2.32e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140717114937/index.html |
Body-wave Moment Tensor (Mwb) Moment 7.75e+17 N-m Magnitude 5.9 Percent DC 86% Depth 11.0 km Updated 2014-07-17 14:54:40 UTC Author us Catalog us Contributor us Code us_b000rtp6_mwb Principal Axes Axis Value Plunge Azimuth T 7.480 10 234 N 0.509 75 6 P -7.989 11 142 Nodal Planes Plane Strike Dip Rake NP1 188 90 -15 NP2 278 75 -180 |
July 17, 2014, SOUTHEASTERN ALASKA, MW=6.0 CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201407171149A DATA: II IU LD DK MN G CU IC GE KP XF L.P.BODY WAVES:161S, 351C, T= 40 MANTLE WAVES: 124S, 178C, T=125 SURFACE WAVES: 182S, 450C, T= 50 TIMESTAMP: Q-20140717191138 CENTROID LOCATION: ORIGIN TIME: 11:49:39.4 0.1 LAT:60.42N 0.00;LON:140.31W 0.01 DEP: 20.9 0.4;TRIANG HDUR: 2.5 MOMENT TENSOR: SCALE 10**25 D-CM RR= 0.098 0.007; TT=-0.458 0.007 PP= 0.359 0.007; RT= 0.066 0.014 RP= 0.679 0.022; TP=-1.060 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.324;PLG=24;AZM=240 2.(N) 0.007; 59; 18 3.(P) -1.331; 18; 141 BEST DBLE.COUPLE:M0= 1.33*10**25 NP1: STRIKE=279;DIP=59;SLIP= 175 NP2: STRIKE= 12;DIP=86;SLIP= 31 ---------## -------------###### --------------######### ----------------########### -----------------############ ---------#####----############# --###############-----######### ##################---------###### ##################------------### #################---------------# #################---------------- ### #########---------------- ### T #########---------------- ## ########--------- ---- ############--------- P --- #########---------- - #######------------ ##--------- |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 145 45 -90 5.65 0.3110 WVFGRD96 2.0 155 50 -75 5.76 0.3996 WVFGRD96 3.0 350 50 -55 5.78 0.4098 WVFGRD96 4.0 185 80 -35 5.73 0.4349 WVFGRD96 5.0 10 90 30 5.73 0.4614 WVFGRD96 6.0 10 90 30 5.76 0.4869 WVFGRD96 7.0 10 90 30 5.77 0.5078 WVFGRD96 8.0 10 90 35 5.81 0.5252 WVFGRD96 9.0 10 90 30 5.82 0.5392 WVFGRD96 10.0 190 90 -25 5.83 0.5474 WVFGRD96 11.0 10 90 25 5.84 0.5529 WVFGRD96 12.0 10 90 25 5.85 0.5549 WVFGRD96 13.0 10 90 25 5.85 0.5539 WVFGRD96 14.0 190 90 -25 5.86 0.5502 WVFGRD96 15.0 10 85 20 5.87 0.5469 WVFGRD96 16.0 10 85 20 5.88 0.5432 WVFGRD96 17.0 190 90 -20 5.88 0.5365 WVFGRD96 18.0 10 85 20 5.89 0.5331 WVFGRD96 19.0 190 90 -20 5.89 0.5253 WVFGRD96 20.0 190 90 -20 5.89 0.5203 WVFGRD96 21.0 190 90 -20 5.90 0.5147 WVFGRD96 22.0 190 90 -20 5.90 0.5082 WVFGRD96 23.0 10 90 20 5.91 0.5017 WVFGRD96 24.0 10 90 20 5.91 0.4950 WVFGRD96 25.0 190 90 -20 5.91 0.4881 WVFGRD96 26.0 10 90 20 5.92 0.4819 WVFGRD96 27.0 5 70 -15 5.96 0.4847 WVFGRD96 28.0 5 70 -15 5.97 0.4808 WVFGRD96 29.0 5 70 -15 5.98 0.4771
The best solution is
WVFGRD96 12.0 10 90 25 5.85 0.5549
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00