The ANSS event ID is usb000rtba and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usb000rtba/executive.
2014/07/16 00:20:08 62.560 -127.827 5.5 4.3 NT, Canada
USGS/SLU Moment Tensor Solution
ENS 2014/07/16 00:20:08:0 62.56 -127.83 5.5 4.3 NT, Canada
Stations used:
AK.BESE AK.JIS AT.SKAG CN.BVCY CN.DAWY CN.DHRN CN.DLBC
CN.EDZN CN.HYT CN.NOWN CN.PLBC CN.WHY CN.YKW3 CN.YUK5
CN.YUK6 TA.EPYK
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 3.43e+22 dyne-cm
Mw = 4.29
Z = 9 km
Plane Strike Dip Rake
NP1 343 69 -148
NP2 240 60 -25
Principal Axes:
Axis Value Plunge Azimuth
T 3.43e+22 5 110
N 0.00e+00 52 13
P -3.43e+22 38 204
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.39e+22
Mxy -1.89e+22
Mxz 1.40e+22
Myy 2.64e+22
Myz 9.83e+21
Mzz -1.25e+22
##------------
########--------------
############----------------
###############---------------
##################----------------
####################---#############
###################---################
################-------#################
#############-----------################
############--------------################
##########----------------################
########-------------------###############
######---------------------###############
####-----------------------##########
###------------------------########## T
##------------------------##########
----------- -----------###########
---------- P -----------##########
-------- -----------########
---------------------#######
------------------####
-------------#
Global CMT Convention Moment Tensor:
R T P
-1.25e+22 1.40e+22 -9.83e+21
1.40e+22 -1.39e+22 1.89e+22
-9.83e+21 1.89e+22 2.64e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140716002008/index.html
|
STK = 240
DIP = 60
RAKE = -25
MW = 4.29
HS = 9.0
The NDK file is 20140716002008.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 255 25 10 4.38 0.6700
WVFGRD96 2.0 255 40 20 4.29 0.7084
WVFGRD96 3.0 255 45 25 4.28 0.7065
WVFGRD96 4.0 245 50 0 4.26 0.6912
WVFGRD96 5.0 245 55 -10 4.26 0.6975
WVFGRD96 6.0 245 55 -15 4.26 0.7042
WVFGRD96 7.0 245 60 -20 4.27 0.7106
WVFGRD96 8.0 240 60 -20 4.28 0.7145
WVFGRD96 9.0 240 60 -25 4.29 0.7169
WVFGRD96 10.0 240 60 -25 4.31 0.7138
WVFGRD96 11.0 240 60 -25 4.31 0.7112
WVFGRD96 12.0 240 60 -25 4.32 0.7060
WVFGRD96 13.0 240 65 -30 4.33 0.6983
WVFGRD96 14.0 240 65 -30 4.34 0.6903
WVFGRD96 15.0 240 65 -30 4.34 0.6812
WVFGRD96 16.0 240 65 -30 4.35 0.6705
WVFGRD96 17.0 240 65 -30 4.36 0.6583
WVFGRD96 18.0 240 65 -25 4.36 0.6455
WVFGRD96 19.0 240 65 -25 4.37 0.6323
WVFGRD96 20.0 235 60 -30 4.38 0.6151
WVFGRD96 21.0 235 60 -30 4.39 0.5993
WVFGRD96 22.0 235 60 -30 4.39 0.5836
WVFGRD96 23.0 235 60 -30 4.40 0.5679
WVFGRD96 24.0 235 60 -30 4.40 0.5515
WVFGRD96 25.0 235 60 -30 4.41 0.5347
WVFGRD96 26.0 235 60 -30 4.41 0.5181
WVFGRD96 27.0 235 60 -30 4.42 0.5017
WVFGRD96 28.0 235 60 -30 4.42 0.4853
WVFGRD96 29.0 325 60 -35 4.43 0.4808
The best solution is
WVFGRD96 9.0 240 60 -25 4.29 0.7169
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00