Location

Location ANSS

The ANSS event ID is uu60075207 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu60075207/executive.

2014/06/29 00:56:22 39.441 -111.436 8.8 4.15 Utah

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/06/29 00:56:22:0  39.44 -111.44   8.8 4.2 Utah
 
 Stations used:
   AE.W13A AE.X16A CI.LDF GS.ID03 IM.NV31 IW.FXWY IW.MFID 
   IW.TPAW NN.SHP RE.PV07 RE.PV14 RE.PV15 RE.PV21 TA.N23A 
   TA.Q24A TA.R11A TA.S22A TA.W18A US.AHID US.DUG US.ELK 
   US.HWUT US.ISCO US.MVCO US.SDCO US.TPNV UU.BGU UU.BRPU 
   UU.CCUT UU.CTU UU.CVRU UU.HVU UU.JLU UU.KNB UU.LCMT UU.MPU 
   UU.MTPU UU.NLU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.TCRU 
   UU.VRUT WY.YHB WY.YHH 
 
 Filtering commands used:
   cut o DIST/3.3 -60 o DIST/3.3 +80
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      200    50   -80
   NP2        5    41   -102
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22      5     283
    N   0.00e+00      8      14
    P  -1.35e+22     81     163

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.77e+20
       Mxy    -2.83e+21
       Mxz     2.20e+21
       Myy     1.27e+22
       Myz    -1.65e+21
       Mzz    -1.31e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #############----#####              
              #############---------######           
             ############------------######          
           ############---------------#######        
          ############-----------------#######       
         ############------------------########      
          ##########--------------------########     
        T #########---------------------########     
          ########----------------------#########    
       ###########----------------------#########    
       ##########----------   ----------#########    
       ##########---------- P ----------#########    
        #########----------   ----------########     
        #########----------------------#########     
         ########---------------------#########      
          #######---------------------########       
           ######--------------------########        
             #####-----------------########          
              #####---------------########           
                 ###------------#######              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.31e+22   2.20e+21   1.65e+21 
  2.20e+21   3.77e+20   2.83e+21 
  1.65e+21   2.83e+21   1.27e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140629005622/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 200
      DIP = 50
     RAKE = -80
       MW = 4.02
       HS = 5.0

The NDK file is 20140629005622.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/06/29 00:56:22:0  39.44 -111.44   8.8 4.2 Utah
 
 Stations used:
   AE.W13A AE.X16A CI.LDF GS.ID03 IM.NV31 IW.FXWY IW.MFID 
   IW.TPAW NN.SHP RE.PV07 RE.PV14 RE.PV15 RE.PV21 TA.N23A 
   TA.Q24A TA.R11A TA.S22A TA.W18A US.AHID US.DUG US.ELK 
   US.HWUT US.ISCO US.MVCO US.SDCO US.TPNV UU.BGU UU.BRPU 
   UU.CCUT UU.CTU UU.CVRU UU.HVU UU.JLU UU.KNB UU.LCMT UU.MPU 
   UU.MTPU UU.NLU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.TCRU 
   UU.VRUT WY.YHB WY.YHH 
 
 Filtering commands used:
   cut o DIST/3.3 -60 o DIST/3.3 +80
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      200    50   -80
   NP2        5    41   -102
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22      5     283
    N   0.00e+00      8      14
    P  -1.35e+22     81     163

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.77e+20
       Mxy    -2.83e+21
       Mxz     2.20e+21
       Myy     1.27e+22
       Myz    -1.65e+21
       Mzz    -1.31e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #############----#####              
              #############---------######           
             ############------------######          
           ############---------------#######        
          ############-----------------#######       
         ############------------------########      
          ##########--------------------########     
        T #########---------------------########     
          ########----------------------#########    
       ###########----------------------#########    
       ##########----------   ----------#########    
       ##########---------- P ----------#########    
        #########----------   ----------########     
        #########----------------------#########     
         ########---------------------#########      
          #######---------------------########       
           ######--------------------########        
             #####-----------------########          
              #####---------------########           
                 ###------------#######              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.31e+22   2.20e+21   1.65e+21 
  2.20e+21   3.77e+20   2.83e+21 
  1.65e+21   2.83e+21   1.27e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140629005622/index.html
	
USGS RMT (MWr) 
Moment      1.47e+15 N-m
Magnitude   4.0
Percent DC  95%
Depth       5.0 km
Updated     2014-06-29 03:33:04 UTC
Author      us
Catalog     us
Contributor us
Code        us_c000rnej_mwr

Principal Axes
Axis	Value	Plunge	Azimuth
T	1.485	5 	285 
N	-0.031	10 	15 
P	-1.454	79 	169 
Nodal Planes
Plane	Strike	Dip	Rake
NP1	204 	51 	-77 
NP2	4 	41 	-105 



        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -60 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    50    65   -35   3.70 0.3519
WVFGRD96    2.0   225    75   -60   3.90 0.4406
WVFGRD96    3.0   220    65   -60   3.94 0.5533
WVFGRD96    4.0   210    55   -70   3.99 0.6326
WVFGRD96    5.0   200    50   -80   4.02 0.6539
WVFGRD96    6.0   205    50   -75   4.01 0.6239
WVFGRD96    7.0   205    50   -75   4.01 0.5708
WVFGRD96    8.0   205    50   -75   4.06 0.5850
WVFGRD96    9.0   235    70   -30   3.97 0.5206
WVFGRD96   10.0   250    60    35   4.00 0.5150
WVFGRD96   11.0   250    60    35   4.01 0.5094
WVFGRD96   12.0   245    65    30   4.00 0.5027
WVFGRD96   13.0   245    65    25   4.01 0.4945
WVFGRD96   14.0   245    65    25   4.01 0.4860
WVFGRD96   15.0   245    65    25   4.02 0.4766
WVFGRD96   16.0   245    65    25   4.02 0.4669
WVFGRD96   17.0   245    65    25   4.03 0.4570
WVFGRD96   18.0   240    70    20   4.03 0.4479
WVFGRD96   19.0   240    70    20   4.04 0.4388
WVFGRD96   20.0   245    70    20   4.04 0.4299
WVFGRD96   21.0   245    70    20   4.05 0.4212
WVFGRD96   22.0   240    75    20   4.05 0.4135
WVFGRD96   23.0   240    75    20   4.05 0.4062
WVFGRD96   24.0   240    75    20   4.06 0.3988
WVFGRD96   25.0   240    75    20   4.06 0.3916
WVFGRD96   26.0   240    75    15   4.07 0.3850
WVFGRD96   27.0   240    75    15   4.07 0.3786
WVFGRD96   28.0   240    75    15   4.08 0.3727
WVFGRD96   29.0   240    75    15   4.09 0.3668

The best solution is

WVFGRD96    5.0   200    50   -80   4.02 0.6539

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -60 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 09:05:05 PM CDT 2024