The ANSS event ID is uu60075207 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu60075207/executive.
2014/06/29 00:56:22 39.441 -111.436 8.8 4.15 Utah
USGS/SLU Moment Tensor Solution
ENS 2014/06/29 00:56:22:0 39.44 -111.44 8.8 4.2 Utah
Stations used:
AE.W13A AE.X16A CI.LDF GS.ID03 IM.NV31 IW.FXWY IW.MFID
IW.TPAW NN.SHP RE.PV07 RE.PV14 RE.PV15 RE.PV21 TA.N23A
TA.Q24A TA.R11A TA.S22A TA.W18A US.AHID US.DUG US.ELK
US.HWUT US.ISCO US.MVCO US.SDCO US.TPNV UU.BGU UU.BRPU
UU.CCUT UU.CTU UU.CVRU UU.HVU UU.JLU UU.KNB UU.LCMT UU.MPU
UU.MTPU UU.NLU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.TCRU
UU.VRUT WY.YHB WY.YHH
Filtering commands used:
cut o DIST/3.3 -60 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.35e+22 dyne-cm
Mw = 4.02
Z = 5 km
Plane Strike Dip Rake
NP1 200 50 -80
NP2 5 41 -102
Principal Axes:
Axis Value Plunge Azimuth
T 1.35e+22 5 283
N 0.00e+00 8 14
P -1.35e+22 81 163
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.77e+20
Mxy -2.83e+21
Mxz 2.20e+21
Myy 1.27e+22
Myz -1.65e+21
Mzz -1.31e+22
###########---
#############----#####
#############---------######
############------------######
############---------------#######
############-----------------#######
############------------------########
##########--------------------########
T #########---------------------########
########----------------------#########
###########----------------------#########
##########---------- ----------#########
##########---------- P ----------#########
#########---------- ----------########
#########----------------------#########
########---------------------#########
#######---------------------########
######--------------------########
#####-----------------########
#####---------------########
###------------#######
--------######
Global CMT Convention Moment Tensor:
R T P
-1.31e+22 2.20e+21 1.65e+21
2.20e+21 3.77e+20 2.83e+21
1.65e+21 2.83e+21 1.27e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140629005622/index.html
|
STK = 200
DIP = 50
RAKE = -80
MW = 4.02
HS = 5.0
The NDK file is 20140629005622.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2014/06/29 00:56:22:0 39.44 -111.44 8.8 4.2 Utah
Stations used:
AE.W13A AE.X16A CI.LDF GS.ID03 IM.NV31 IW.FXWY IW.MFID
IW.TPAW NN.SHP RE.PV07 RE.PV14 RE.PV15 RE.PV21 TA.N23A
TA.Q24A TA.R11A TA.S22A TA.W18A US.AHID US.DUG US.ELK
US.HWUT US.ISCO US.MVCO US.SDCO US.TPNV UU.BGU UU.BRPU
UU.CCUT UU.CTU UU.CVRU UU.HVU UU.JLU UU.KNB UU.LCMT UU.MPU
UU.MTPU UU.NLU UU.PSUT UU.RDMU UU.SPU UU.SRU UU.TCRU
UU.VRUT WY.YHB WY.YHH
Filtering commands used:
cut o DIST/3.3 -60 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.35e+22 dyne-cm
Mw = 4.02
Z = 5 km
Plane Strike Dip Rake
NP1 200 50 -80
NP2 5 41 -102
Principal Axes:
Axis Value Plunge Azimuth
T 1.35e+22 5 283
N 0.00e+00 8 14
P -1.35e+22 81 163
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.77e+20
Mxy -2.83e+21
Mxz 2.20e+21
Myy 1.27e+22
Myz -1.65e+21
Mzz -1.31e+22
###########---
#############----#####
#############---------######
############------------######
############---------------#######
############-----------------#######
############------------------########
##########--------------------########
T #########---------------------########
########----------------------#########
###########----------------------#########
##########---------- ----------#########
##########---------- P ----------#########
#########---------- ----------########
#########----------------------#########
########---------------------#########
#######---------------------########
######--------------------########
#####-----------------########
#####---------------########
###------------#######
--------######
Global CMT Convention Moment Tensor:
R T P
-1.31e+22 2.20e+21 1.65e+21
2.20e+21 3.77e+20 2.83e+21
1.65e+21 2.83e+21 1.27e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140629005622/index.html
|
USGS RMT (MWr) Moment 1.47e+15 N-m Magnitude 4.0 Percent DC 95% Depth 5.0 km Updated 2014-06-29 03:33:04 UTC Author us Catalog us Contributor us Code us_c000rnej_mwr Principal Axes Axis Value Plunge Azimuth T 1.485 5 285 N -0.031 10 15 P -1.454 79 169 Nodal Planes Plane Strike Dip Rake NP1 204 51 -77 NP2 4 41 -105 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -60 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 50 65 -35 3.70 0.3519
WVFGRD96 2.0 225 75 -60 3.90 0.4406
WVFGRD96 3.0 220 65 -60 3.94 0.5533
WVFGRD96 4.0 210 55 -70 3.99 0.6326
WVFGRD96 5.0 200 50 -80 4.02 0.6539
WVFGRD96 6.0 205 50 -75 4.01 0.6239
WVFGRD96 7.0 205 50 -75 4.01 0.5708
WVFGRD96 8.0 205 50 -75 4.06 0.5850
WVFGRD96 9.0 235 70 -30 3.97 0.5206
WVFGRD96 10.0 250 60 35 4.00 0.5150
WVFGRD96 11.0 250 60 35 4.01 0.5094
WVFGRD96 12.0 245 65 30 4.00 0.5027
WVFGRD96 13.0 245 65 25 4.01 0.4945
WVFGRD96 14.0 245 65 25 4.01 0.4860
WVFGRD96 15.0 245 65 25 4.02 0.4766
WVFGRD96 16.0 245 65 25 4.02 0.4669
WVFGRD96 17.0 245 65 25 4.03 0.4570
WVFGRD96 18.0 240 70 20 4.03 0.4479
WVFGRD96 19.0 240 70 20 4.04 0.4388
WVFGRD96 20.0 245 70 20 4.04 0.4299
WVFGRD96 21.0 245 70 20 4.05 0.4212
WVFGRD96 22.0 240 75 20 4.05 0.4135
WVFGRD96 23.0 240 75 20 4.05 0.4062
WVFGRD96 24.0 240 75 20 4.06 0.3988
WVFGRD96 25.0 240 75 20 4.06 0.3916
WVFGRD96 26.0 240 75 15 4.07 0.3850
WVFGRD96 27.0 240 75 15 4.07 0.3786
WVFGRD96 28.0 240 75 15 4.08 0.3727
WVFGRD96 29.0 240 75 15 4.09 0.3668
The best solution is
WVFGRD96 5.0 200 50 -80 4.02 0.6539
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -60 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00