Location

Location ANSS

The ANSS event ID is ak0147utj430 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0147utj430/executive.

2014/06/20 01:06:22 63.133 -149.311 82.1 4.2 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/06/20 01:06:22:0  63.13 -149.31  82.1 4.2 Alaska
 
 Stations used:
   AK.BPAW AK.BRLK AK.CCB AK.CNP AK.CRQ AK.DHY AK.FID AK.FYU 
   AK.GHO AK.HIN AK.MCAR AK.MCK AK.PAX AK.RAG AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI AK.WRH AT.PMR IM.IL31 
   IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 2.79e+22 dyne-cm
  Mw = 4.23 
  Z  = 86 km
  Plane   Strike  Dip  Rake
   NP1      110    75    25
   NP2       13    66   164
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.79e+22     28     333
    N   0.00e+00     61     139
    P  -2.79e+22      6     240

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.05e+22
       Mxy    -2.06e+22
       Mxz     1.18e+22
       Myy    -1.64e+22
       Myz    -2.65e+21
       Mzz     5.89e+21
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #################-----              
              ######   ###########--------           
             ####### T ############--------          
           #########   ############----------        
          #########################-----------       
         ##########################------------      
        -##########################-------------     
        ---########################-------------     
       -------#####################--------------    
       ----------#################---------------    
       -------------##############---------------    
       ------------------#########---------------    
        ----------------------###---------------     
        ------------------------#####-----------     
         -   -------------------###############      
           P ------------------###############       
             -----------------###############        
             ----------------##############          
              --------------##############           
                 ---------#############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.89e+21   1.18e+22   2.65e+21 
  1.18e+22   1.05e+22   2.06e+22 
  2.65e+21   2.06e+22  -1.64e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140620010622/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 110
      DIP = 75
     RAKE = 25
       MW = 4.23
       HS = 86.0

The NDK file is 20140620010622.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/06/20 01:06:22:0  63.13 -149.31  82.1 4.2 Alaska
 
 Stations used:
   AK.BPAW AK.BRLK AK.CCB AK.CNP AK.CRQ AK.DHY AK.FID AK.FYU 
   AK.GHO AK.HIN AK.MCAR AK.MCK AK.PAX AK.RAG AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI AK.WRH AT.PMR IM.IL31 
   IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 2.79e+22 dyne-cm
  Mw = 4.23 
  Z  = 86 km
  Plane   Strike  Dip  Rake
   NP1      110    75    25
   NP2       13    66   164
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.79e+22     28     333
    N   0.00e+00     61     139
    P  -2.79e+22      6     240

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.05e+22
       Mxy    -2.06e+22
       Mxz     1.18e+22
       Myy    -1.64e+22
       Myz    -2.65e+21
       Mzz     5.89e+21
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #################-----              
              ######   ###########--------           
             ####### T ############--------          
           #########   ############----------        
          #########################-----------       
         ##########################------------      
        -##########################-------------     
        ---########################-------------     
       -------#####################--------------    
       ----------#################---------------    
       -------------##############---------------    
       ------------------#########---------------    
        ----------------------###---------------     
        ------------------------#####-----------     
         -   -------------------###############      
           P ------------------###############       
             -----------------###############        
             ----------------##############          
              --------------##############           
                 ---------#############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.89e+21   1.18e+22   2.65e+21 
  1.18e+22   1.05e+22   2.06e+22 
  2.65e+21   2.06e+22  -1.64e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140620010622/index.html
	
Moment
2.92e+15 N-m
Magnitude
4.2
Percent DC
82%
Depth
86.0 km
Updated
2014-06-20 01:50:47 UTC
Author
us
Catalog
us
Contributor
us
Code
us_c000rii9_mwr
Principal Axes

Axis	Value	Plunge	Azimuth
T	3.040	28	336
N	-0.259	61	136
P	-2.781	8	242
Nodal Planes

Plane	Strike	Dip	Rake
NP1	112°	77	26
NP2	16°	65	166

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.05 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   195    65   -20   3.47 0.1995
WVFGRD96    4.0   260    80    -5   3.51 0.2430
WVFGRD96    6.0   260    85     0   3.56 0.2711
WVFGRD96    8.0    85    75     5   3.61 0.2955
WVFGRD96   10.0    85    75    -5   3.65 0.3131
WVFGRD96   12.0    85    75    -5   3.68 0.3254
WVFGRD96   14.0    90    75     5   3.69 0.3359
WVFGRD96   16.0    90    75     5   3.71 0.3481
WVFGRD96   18.0    90    75     5   3.73 0.3581
WVFGRD96   20.0    90    75     5   3.75 0.3668
WVFGRD96   22.0    95    75     5   3.77 0.3760
WVFGRD96   24.0    95    75    10   3.78 0.3849
WVFGRD96   26.0    95    75    10   3.80 0.3933
WVFGRD96   28.0    95    75    10   3.82 0.4011
WVFGRD96   30.0   100    75    10   3.84 0.4082
WVFGRD96   32.0   100    75    10   3.86 0.4150
WVFGRD96   34.0   105    75    15   3.88 0.4219
WVFGRD96   36.0   105    75    15   3.91 0.4278
WVFGRD96   38.0   105    75    10   3.94 0.4347
WVFGRD96   40.0   105    65    20   4.00 0.4556
WVFGRD96   42.0   105    65    20   4.02 0.4662
WVFGRD96   44.0   105    65    20   4.04 0.4768
WVFGRD96   46.0   105    65    20   4.06 0.4862
WVFGRD96   48.0   110    65    20   4.08 0.4962
WVFGRD96   50.0   110    65    20   4.10 0.5059
WVFGRD96   52.0   110    65    25   4.11 0.5159
WVFGRD96   54.0   110    65    25   4.12 0.5247
WVFGRD96   56.0   110    70    20   4.13 0.5327
WVFGRD96   58.0   110    70    25   4.14 0.5413
WVFGRD96   60.0   110    70    25   4.15 0.5492
WVFGRD96   62.0   110    70    25   4.16 0.5569
WVFGRD96   64.0   110    70    25   4.17 0.5631
WVFGRD96   66.0   110    70    25   4.18 0.5698
WVFGRD96   68.0   110    70    25   4.18 0.5746
WVFGRD96   70.0   110    70    25   4.19 0.5784
WVFGRD96   72.0   110    75    25   4.19 0.5830
WVFGRD96   74.0   110    75    25   4.20 0.5871
WVFGRD96   76.0   110    75    25   4.21 0.5904
WVFGRD96   78.0   110    75    25   4.21 0.5924
WVFGRD96   80.0   110    75    25   4.22 0.5940
WVFGRD96   82.0   110    75    25   4.22 0.5952
WVFGRD96   84.0   110    75    25   4.23 0.5962
WVFGRD96   86.0   110    75    25   4.23 0.5965
WVFGRD96   88.0   110    75    25   4.24 0.5960
WVFGRD96   90.0   110    80    25   4.24 0.5957
WVFGRD96   92.0   110    80    25   4.24 0.5956
WVFGRD96   94.0   110    80    25   4.25 0.5950
WVFGRD96   96.0   110    80    30   4.24 0.5942
WVFGRD96   98.0   110    80    30   4.25 0.5928
WVFGRD96  100.0   110    80    30   4.25 0.5912
WVFGRD96  102.0   110    80    30   4.26 0.5893
WVFGRD96  104.0   110    80    30   4.26 0.5873
WVFGRD96  106.0   110    80    30   4.26 0.5853
WVFGRD96  108.0   110    80    30   4.27 0.5831
WVFGRD96  110.0   110    80    30   4.27 0.5802
WVFGRD96  112.0   110    80    30   4.27 0.5772
WVFGRD96  114.0   110    85    30   4.27 0.5738
WVFGRD96  116.0   110    85    30   4.28 0.5710
WVFGRD96  118.0   110    85    35   4.27 0.5686

The best solution is

WVFGRD96   86.0   110    75    25   4.23 0.5965

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.05 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 08:24:24 PM CDT 2024