The ANSS event ID is usc000rb71 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000rb71/executive.
2014/06/05 05:44:27 61.173 -140.279 10.0 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/06/05 05:44:27:0 61.17 -140.28 10.0 5.1 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.CCB AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN AK.JIS AK.KNK AK.MCK AK.MDM AK.MESA AK.PIN AK.PPD AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MENT AT.PMR AT.SIT AT.SKAG AT.YKU2 CN.DAWY CN.HYT CN.WHY IM.IL31 IU.COLA US.EGAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.90e+23 dyne-cm Mw = 5.06 Z = 14 km Plane Strike Dip Rake NP1 70 80 20 NP2 336 70 169 Principal Axes: Axis Value Plunge Azimuth T 4.90e+23 21 295 N 0.00e+00 68 96 P -4.90e+23 7 202 Moment Tensor: (dyne-cm) Component Value Mxx -3.42e+23 Mxy -3.29e+23 Mxz 1.21e+23 Myy 2.85e+23 Myz -1.29e+23 Mzz 5.73e+22 -------------- #####----------------- ##########------------------ ############------------------ ################------------------ ##################------------------ ## ###############------------------ ### T ################-----------------# ### #################-------------#### #########################---------######## ##########################----############ ##########################-############### #####################------############### ##############-------------############# ######----------------------############ ---------------------------########### --------------------------########## --------------------------######## ------------------------###### ----- ---------------##### -- P ---------------## ------------- Global CMT Convention Moment Tensor: R T P 5.73e+22 1.21e+23 1.29e+23 1.21e+23 -3.42e+23 3.29e+23 1.29e+23 3.29e+23 2.85e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140605054427/index.html |
STK = 70 DIP = 80 RAKE = 20 MW = 5.06 HS = 14.0
The NDK file is 20140605054427.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/06/05 05:44:27:0 61.17 -140.28 10.0 5.1 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.CCB AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN AK.JIS AK.KNK AK.MCK AK.MDM AK.MESA AK.PIN AK.PPD AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH AT.MENT AT.PMR AT.SIT AT.SKAG AT.YKU2 CN.DAWY CN.HYT CN.WHY IM.IL31 IU.COLA US.EGAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.90e+23 dyne-cm Mw = 5.06 Z = 14 km Plane Strike Dip Rake NP1 70 80 20 NP2 336 70 169 Principal Axes: Axis Value Plunge Azimuth T 4.90e+23 21 295 N 0.00e+00 68 96 P -4.90e+23 7 202 Moment Tensor: (dyne-cm) Component Value Mxx -3.42e+23 Mxy -3.29e+23 Mxz 1.21e+23 Myy 2.85e+23 Myz -1.29e+23 Mzz 5.73e+22 -------------- #####----------------- ##########------------------ ############------------------ ################------------------ ##################------------------ ## ###############------------------ ### T ################-----------------# ### #################-------------#### #########################---------######## ##########################----############ ##########################-############### #####################------############### ##############-------------############# ######----------------------############ ---------------------------########### --------------------------########## --------------------------######## ------------------------###### ----- ---------------##### -- P ---------------## ------------- Global CMT Convention Moment Tensor: R T P 5.73e+22 1.21e+23 1.29e+23 1.21e+23 -3.42e+23 3.29e+23 1.29e+23 3.29e+23 2.85e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140605054427/index.html |
June 5, 2014, SOUTHERN YUKON TERRITORY, CANADA, MW=5.2 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201406050544A DATA: IU MN II G GE IC CU LD DK KP L.P.BODY WAVES: 70S, 98C, T= 40 SURFACE WAVES: 144S, 275C, T= 50 TIMESTAMP: Q-20140605094736 CENTROID LOCATION: ORIGIN TIME: 05:44:33.9 0.2 LAT:61.32N 0.01;LON:140.27W 0.02 DEP: 23.9 0.9;TRIANG HDUR: 1.0 MOMENT TENSOR: SCALE 10**24 D-CM RR=-0.052 0.022; TT=-0.495 0.019 PP= 0.547 0.018; RT= 0.093 0.024 RP= 0.071 0.025; TP= 0.693 0.014 PRINCIPAL AXES: 1.(T) VAL= 0.905;PLG= 6;AZM=297 2.(N) -0.060; 83; 86 3.(P) -0.844; 4; 206 BEST DBLE.COUPLE:M0= 8.74*10**23 NP1: STRIKE=341;DIP=83;SLIP= 178 NP2: STRIKE= 72;DIP=88;SLIP= 7 ----------- #####-------------- ########--------------- ###########---------------- ###########---------------- T ############---------------- ############---------------# #################---------####### ##################--############# ###############---############### #########----------############## ##----------------############# -------------------############ ------------------########### ------------------######### --- ----------####### - P -----------#### ----------- |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 65 85 0 4.66 0.2904 WVFGRD96 2.0 65 85 5 4.77 0.3728 WVFGRD96 3.0 65 80 5 4.82 0.4105 WVFGRD96 4.0 65 80 5 4.86 0.4390 WVFGRD96 5.0 65 80 10 4.89 0.4631 WVFGRD96 6.0 70 75 20 4.92 0.4877 WVFGRD96 7.0 70 80 20 4.95 0.5091 WVFGRD96 8.0 70 75 20 4.98 0.5339 WVFGRD96 9.0 70 75 20 5.00 0.5482 WVFGRD96 10.0 70 75 20 5.02 0.5585 WVFGRD96 11.0 70 80 20 5.03 0.5661 WVFGRD96 12.0 70 80 20 5.04 0.5712 WVFGRD96 13.0 70 80 20 5.05 0.5737 WVFGRD96 14.0 70 80 20 5.06 0.5738 WVFGRD96 15.0 70 80 15 5.07 0.5721 WVFGRD96 16.0 70 80 15 5.08 0.5693 WVFGRD96 17.0 70 80 15 5.09 0.5660 WVFGRD96 18.0 70 80 15 5.09 0.5618 WVFGRD96 19.0 70 80 15 5.10 0.5568 WVFGRD96 20.0 70 85 20 5.11 0.5520 WVFGRD96 21.0 70 85 20 5.12 0.5474 WVFGRD96 22.0 70 85 20 5.13 0.5422 WVFGRD96 23.0 245 90 -20 5.14 0.5355 WVFGRD96 24.0 70 85 20 5.14 0.5307 WVFGRD96 25.0 245 90 -20 5.15 0.5230 WVFGRD96 26.0 245 90 -20 5.16 0.5162 WVFGRD96 27.0 70 85 20 5.16 0.5116 WVFGRD96 28.0 70 85 20 5.17 0.5048 WVFGRD96 29.0 250 90 -20 5.18 0.4967
The best solution is
WVFGRD96 14.0 70 80 20 5.06 0.5738
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00