The ANSS event ID is ak01474j743m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01474j743m/executive.
2014/06/04 11:58:58 58.980 -136.728 8.1 5.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/06/04 11:58:58:0 58.98 -136.73 8.1 5.2 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.GLB AK.JIS AK.MESA AK.PIN AK.VRDI AK.WAX AK.YAH AT.CRAG AT.MENT AT.SKAG AT.YKU2 CN.DLBC CN.HYT US.WRAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.85e+24 dyne-cm Mw = 5.57 Z = 15 km Plane Strike Dip Rake NP1 350 55 120 NP2 125 45 55 Principal Axes: Axis Value Plunge Azimuth T 2.85e+24 65 318 N 0.00e+00 24 151 P -2.85e+24 5 59 Moment Tensor: (dyne-cm) Component Value Mxx -4.81e+23 Mxy -1.49e+24 Mxz 6.63e+23 Myy -1.85e+24 Myz -9.47e+23 Mzz 2.34e+24 #####--------- ############---------- ################------------ ###################----------- ######################---------- -#######################--------- P --########################-------- - ---########### ###########------------ ---########### T ###########------------ -----########## ############------------ ------########################------------ -------#######################------------ --------######################------------ --------#####################----------- ----------###################----------- -----------#################---------- -------------##############--------- ----------------#########--------- --------------------###---#### ---------------------####### -----------------##### ------------## Global CMT Convention Moment Tensor: R T P 2.34e+24 6.63e+23 9.47e+23 6.63e+23 -4.81e+23 1.49e+24 9.47e+23 1.49e+24 -1.85e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140604115858/index.html |
STK = 125 DIP = 45 RAKE = 55 MW = 5.57 HS = 15.0
The NDK file is 20140604115858.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/06/04 11:58:58:0 58.98 -136.73 8.1 5.2 Alaska Stations used: AK.BAL AK.BARN AK.BESE AK.GLB AK.JIS AK.MESA AK.PIN AK.VRDI AK.WAX AK.YAH AT.CRAG AT.MENT AT.SKAG AT.YKU2 CN.DLBC CN.HYT US.WRAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.85e+24 dyne-cm Mw = 5.57 Z = 15 km Plane Strike Dip Rake NP1 350 55 120 NP2 125 45 55 Principal Axes: Axis Value Plunge Azimuth T 2.85e+24 65 318 N 0.00e+00 24 151 P -2.85e+24 5 59 Moment Tensor: (dyne-cm) Component Value Mxx -4.81e+23 Mxy -1.49e+24 Mxz 6.63e+23 Myy -1.85e+24 Myz -9.47e+23 Mzz 2.34e+24 #####--------- ############---------- ################------------ ###################----------- ######################---------- -#######################--------- P --########################-------- - ---########### ###########------------ ---########### T ###########------------ -----########## ############------------ ------########################------------ -------#######################------------ --------######################------------ --------#####################----------- ----------###################----------- -----------#################---------- -------------##############--------- ----------------#########--------- --------------------###---#### ---------------------####### -----------------##### ------------## Global CMT Convention Moment Tensor: R T P 2.34e+24 6.63e+23 9.47e+23 6.63e+23 -4.81e+23 1.49e+24 9.47e+23 1.49e+24 -1.85e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140604115858/index.html |
Body-wave Moment Tensor (Mwb) Moment magnitude derived from a moment tensor inversion of long-period (~10 - 100 s) body-waves (P-, SH- ) at teleseismic distances (~30 to ~90 degrees). Moment 2.99e+17 N-m Magnitude 5.6 Percent DC 95% Depth 11.0 km Updated 2014-06-04 12:59:37 UTC Author us Catalog us Contributor us Code us_c000rauc_mwb Principal Axes Axis Value Plunge Azimuth T 3.028 69 303 N -0.070 18 156 P -2.958 10 63 Nodal Planes Plane Strike Dip Rake NP1 348 58 111 NP2 132 38 61 |
SOUTHEASTERN ALASKA, MW=5.7 Howard Koss Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201406041158A DATA: II IU LD CU MN G IC GE DK KP L.P.BODY WAVES:155S, 301C, T= 40 MANTLE WAVES: 98S, 115C, T=125 SURFACE WAVES: 167S, 375C, T= 50 TIMESTAMP: Q-20140604135850 CENTROID LOCATION: ORIGIN TIME: 11:59:02.4 0.1 LAT:59.08N 0.01;LON:136.71W 0.01 DEP: 17.5 0.3;TRIANG HDUR: 1.8 MOMENT TENSOR: SCALE 10**24 D-CM RR= 4.220 0.046; TT=-0.600 0.039 PP=-3.620 0.039; RT= 2.140 0.109 RP= 0.495 0.098; TP= 2.550 0.031 PRINCIPAL AXES: 1.(T) VAL= 5.263;PLG=64;AZM=338 2.(N) -0.143; 25; 147 3.(P) -5.120; 4; 239 BEST DBLE.COUPLE:M0= 5.19*10**24 NP1: STRIKE=354;DIP=46;SLIP= 126 NP2: STRIKE=127;DIP=54;SLIP= 58 #####------ ############------- ################------- ###################-------- -####################-------- ---######### ########-------- ---######### T ########-------- -----######## #########-------- ------###################-------- -------##################-------- ---------################-------- ----------##############------- ---------############------- P ------------########------- -----------------##------# ------------------##### --------------##### --------### |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 90 65 -25 5.26 0.3496 WVFGRD96 2.0 90 65 -30 5.34 0.3967 WVFGRD96 3.0 270 65 -30 5.38 0.3944 WVFGRD96 4.0 270 45 -20 5.43 0.4040 WVFGRD96 5.0 275 45 -15 5.43 0.4282 WVFGRD96 6.0 275 50 -10 5.44 0.4485 WVFGRD96 7.0 275 50 -10 5.45 0.4646 WVFGRD96 8.0 275 45 -10 5.49 0.4801 WVFGRD96 9.0 105 45 20 5.51 0.5084 WVFGRD96 10.0 110 45 35 5.54 0.5454 WVFGRD96 11.0 115 45 45 5.56 0.5804 WVFGRD96 12.0 120 45 50 5.57 0.6073 WVFGRD96 13.0 120 45 50 5.57 0.6248 WVFGRD96 14.0 125 45 55 5.57 0.6341 WVFGRD96 15.0 125 45 55 5.57 0.6378 WVFGRD96 16.0 115 50 45 5.58 0.6374 WVFGRD96 17.0 115 50 40 5.57 0.6343 WVFGRD96 18.0 115 50 40 5.57 0.6287 WVFGRD96 19.0 115 50 40 5.58 0.6208 WVFGRD96 20.0 110 55 30 5.58 0.6126 WVFGRD96 21.0 110 55 30 5.59 0.6047 WVFGRD96 22.0 110 55 30 5.59 0.5941 WVFGRD96 23.0 110 55 30 5.60 0.5830 WVFGRD96 24.0 110 55 25 5.60 0.5713 WVFGRD96 25.0 110 55 25 5.60 0.5596 WVFGRD96 26.0 110 55 25 5.61 0.5474 WVFGRD96 27.0 110 55 25 5.61 0.5347 WVFGRD96 28.0 110 55 25 5.61 0.5219 WVFGRD96 29.0 110 55 25 5.62 0.5091
The best solution is
WVFGRD96 15.0 125 45 55 5.57 0.6378
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00