The ANSS event ID is ak0145z8amwh and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0145z8amwh/executive.
2014/05/10 14:16:10 60.010 -152.126 89.1 5.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/05/10 14:16:10:0 60.01 -152.13 89.1 5.8 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI AK.WRH AK.YAH AT.CHGN AT.MENT AT.MID AT.OHAK AV.RDWB AV.RED IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.63e+24 dyne-cm Mw = 5.64 Z = 88 km Plane Strike Dip Rake NP1 102 48 109 NP2 255 45 70 Principal Axes: Axis Value Plunge Azimuth T 3.63e+24 76 82 N 0.00e+00 14 269 P -3.63e+24 2 179 Moment Tensor: (dyne-cm) Component Value Mxx -3.62e+24 Mxy 9.25e+22 Mxz 2.27e+23 Myy 2.10e+23 Myz 8.48e+23 Mzz 3.41e+24 -------------- ---------------------- ---------------------------- ------------------------------ ---------------------------------- -------------##################----- ----------##########################-- --------###############################- ------################################## #----################## ################ ##--################### T ################ ####################### ################ ##---##################################### ------################################## ---------#############################-- -----------#######################---- ----------------############-------- ---------------------------------- ------------------------------ ---------------------------- ---------- --------- ------ P ----- Global CMT Convention Moment Tensor: R T P 3.41e+24 2.27e+23 -8.48e+23 2.27e+23 -3.62e+24 -9.25e+22 -8.48e+23 -9.25e+22 2.10e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140510141610/index.html |
STK = 255 DIP = 45 RAKE = 70 MW = 5.64 HS = 88.0
The NDK file is 20140510141610.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/05/10 14:16:10:0 60.01 -152.13 89.1 5.8 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI AK.WRH AK.YAH AT.CHGN AT.MENT AT.MID AT.OHAK AV.RDWB AV.RED IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.63e+24 dyne-cm Mw = 5.64 Z = 88 km Plane Strike Dip Rake NP1 102 48 109 NP2 255 45 70 Principal Axes: Axis Value Plunge Azimuth T 3.63e+24 76 82 N 0.00e+00 14 269 P -3.63e+24 2 179 Moment Tensor: (dyne-cm) Component Value Mxx -3.62e+24 Mxy 9.25e+22 Mxz 2.27e+23 Myy 2.10e+23 Myz 8.48e+23 Mzz 3.41e+24 -------------- ---------------------- ---------------------------- ------------------------------ ---------------------------------- -------------##################----- ----------##########################-- --------###############################- ------################################## #----################## ################ ##--################### T ################ ####################### ################ ##---##################################### ------################################## ---------#############################-- -----------#######################---- ----------------############-------- ---------------------------------- ------------------------------ ---------------------------- ---------- --------- ------ P ----- Global CMT Convention Moment Tensor: R T P 3.41e+24 2.27e+23 -8.48e+23 2.27e+23 -3.62e+24 -9.25e+22 -8.48e+23 -9.25e+22 2.10e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140510141610/index.html |
|
May 10, 2014, SOUTHERN ALASKA, MW=5.8 Meredith Nettles Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201405101416A DATA: II IU CU MN G IC LD GE DK KP L.P.BODY WAVES:107S, 202C, T= 40 SURFACE WAVES: 111S, 241C, T= 50 TIMESTAMP: Q-20140510174259 CENTROID LOCATION: ORIGIN TIME: 14:16:12.0 0.1 LAT:59.98N 0.01;LON:152.07W 0.02 DEP:104.9 0.7;TRIANG HDUR: 1.9 MOMENT TENSOR: SCALE 10**24 D-CM RR= 4.160 0.053; TT=-6.300 0.061 PP= 2.140 0.063; RT=-0.375 0.054 RP=-1.210 0.045; TP= 0.260 0.057 PRINCIPAL AXES: 1.(T) VAL= 4.744;PLG=65;AZM= 95 2.(N) 1.575; 25; 271 3.(P) -6.319; 2; 1 BEST DBLE.COUPLE:M0= 5.53*10**24 NP1: STRIKE=115;DIP=48;SLIP= 125 NP2: STRIKE=249;DIP=52;SLIP= 57 ---- P ---- -------- -------- ----------------------- --------------------------- ----------------#########---- #----------###################- #-------####################### ###---########################### ####-############### ########## ###--############### T ########## ##----############## ########## -------######################## ----------##################### -------------##############-- --------------------------- ----------------------- ------------------- ----------- |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 5 40 -85 4.87 0.2141 WVFGRD96 4.0 350 85 5 4.92 0.2189 WVFGRD96 6.0 170 90 0 4.97 0.2282 WVFGRD96 8.0 170 90 0 5.02 0.2319 WVFGRD96 10.0 35 65 -40 5.03 0.2476 WVFGRD96 12.0 40 70 -35 5.04 0.2613 WVFGRD96 14.0 40 70 -35 5.06 0.2727 WVFGRD96 16.0 40 70 -30 5.07 0.2813 WVFGRD96 18.0 40 70 -30 5.09 0.2878 WVFGRD96 20.0 50 65 50 5.08 0.2990 WVFGRD96 22.0 50 65 50 5.10 0.3125 WVFGRD96 24.0 50 65 50 5.12 0.3242 WVFGRD96 26.0 50 65 50 5.13 0.3333 WVFGRD96 28.0 50 65 50 5.15 0.3396 WVFGRD96 30.0 50 65 50 5.16 0.3443 WVFGRD96 32.0 50 65 50 5.18 0.3469 WVFGRD96 34.0 50 65 45 5.19 0.3473 WVFGRD96 36.0 50 65 45 5.20 0.3475 WVFGRD96 38.0 50 65 45 5.22 0.3491 WVFGRD96 40.0 60 65 60 5.35 0.3592 WVFGRD96 42.0 60 60 55 5.36 0.3693 WVFGRD96 44.0 65 45 50 5.37 0.3833 WVFGRD96 46.0 65 45 50 5.39 0.3980 WVFGRD96 48.0 65 45 50 5.40 0.4124 WVFGRD96 50.0 70 45 55 5.42 0.4266 WVFGRD96 52.0 70 45 60 5.43 0.4422 WVFGRD96 54.0 70 45 60 5.45 0.4578 WVFGRD96 56.0 75 45 65 5.47 0.4734 WVFGRD96 58.0 75 45 65 5.48 0.4887 WVFGRD96 60.0 75 45 65 5.49 0.5022 WVFGRD96 62.0 80 45 75 5.50 0.5160 WVFGRD96 64.0 80 45 75 5.51 0.5292 WVFGRD96 66.0 85 45 80 5.53 0.5414 WVFGRD96 68.0 85 45 80 5.54 0.5523 WVFGRD96 70.0 85 45 80 5.55 0.5616 WVFGRD96 72.0 270 45 90 5.56 0.5709 WVFGRD96 74.0 90 45 90 5.57 0.5789 WVFGRD96 76.0 95 45 95 5.59 0.5853 WVFGRD96 78.0 95 45 95 5.59 0.5909 WVFGRD96 80.0 265 45 85 5.60 0.5951 WVFGRD96 82.0 260 45 80 5.61 0.5984 WVFGRD96 84.0 260 45 80 5.61 0.6003 WVFGRD96 86.0 255 45 70 5.64 0.6021 WVFGRD96 88.0 255 45 70 5.64 0.6024 WVFGRD96 90.0 250 45 65 5.65 0.6018 WVFGRD96 92.0 250 45 65 5.66 0.6000 WVFGRD96 94.0 240 50 55 5.69 0.5999 WVFGRD96 96.0 240 50 55 5.69 0.5981 WVFGRD96 98.0 240 50 55 5.69 0.5951 WVFGRD96 100.0 240 50 55 5.70 0.5905 WVFGRD96 102.0 240 50 55 5.70 0.5851 WVFGRD96 104.0 240 50 55 5.70 0.5787 WVFGRD96 106.0 235 50 50 5.72 0.5718 WVFGRD96 108.0 235 50 50 5.72 0.5644
The best solution is
WVFGRD96 88.0 255 45 70 5.64 0.6024
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00