The ANSS event ID is ak0145qswuta and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0145qswuta/executive.
2014/05/05 04:59:44 60.652 -149.560 38.2 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/05/05 04:59:44:0 60.65 -149.56 38.2 4.5 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HOM AK.KNK AK.KTH AK.MCAR AK.MCK AK.MLY AK.NEA AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.TGL AK.TRF AK.WRH AT.MENT AT.PMR IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.33e+22 dyne-cm Mw = 4.51 Z = 46 km Plane Strike Dip Rake NP1 60 55 -65 NP2 201 42 -121 Principal Axes: Axis Value Plunge Azimuth T 7.33e+22 7 132 N 0.00e+00 20 225 P -7.33e+22 69 25 Moment Tensor: (dyne-cm) Component Value Mxx 2.48e+22 Mxy -3.97e+22 Mxz -2.86e+22 Myy 3.76e+22 Myz -4.03e+21 Mzz -6.24e+22 ############## ############---------- ###########----------------- ##########-------------------- ##########------------------------ ##########-------------------------- ##########---------------------------# ##########----------- -------------### #########------------ P ------------#### #########------------- -----------###### #########--------------------------####### ########--------------------------######## ########------------------------########## #######----------------------########### #######-------------------############## ######----------------################ ######-----------################### -----######################## ## ----####################### T ----###################### --#################### ############## Global CMT Convention Moment Tensor: R T P -6.24e+22 -2.86e+22 4.03e+21 -2.86e+22 2.48e+22 3.97e+22 4.03e+21 3.97e+22 3.76e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140505045944/index.html |
STK = 60 DIP = 55 RAKE = -65 MW = 4.51 HS = 46.0
The NDK file is 20140505045944.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/05/05 04:59:44:0 60.65 -149.56 38.2 4.5 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CNP AK.CRQ AK.CTG AK.DHY AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HDA AK.HIN AK.HOM AK.KNK AK.KTH AK.MCAR AK.MCK AK.MLY AK.NEA AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.TGL AK.TRF AK.WRH AT.MENT AT.PMR IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.33e+22 dyne-cm Mw = 4.51 Z = 46 km Plane Strike Dip Rake NP1 60 55 -65 NP2 201 42 -121 Principal Axes: Axis Value Plunge Azimuth T 7.33e+22 7 132 N 0.00e+00 20 225 P -7.33e+22 69 25 Moment Tensor: (dyne-cm) Component Value Mxx 2.48e+22 Mxy -3.97e+22 Mxz -2.86e+22 Myy 3.76e+22 Myz -4.03e+21 Mzz -6.24e+22 ############## ############---------- ###########----------------- ##########-------------------- ##########------------------------ ##########-------------------------- ##########---------------------------# ##########----------- -------------### #########------------ P ------------#### #########------------- -----------###### #########--------------------------####### ########--------------------------######## ########------------------------########## #######----------------------########### #######-------------------############## ######----------------################ ######-----------################### -----######################## ## ----####################### T ----###################### --#################### ############## Global CMT Convention Moment Tensor: R T P -6.24e+22 -2.86e+22 4.03e+21 -2.86e+22 2.48e+22 3.97e+22 4.03e+21 3.97e+22 3.76e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140505045944/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 7.64e+15 N-m Magnitude 4.5 Percent DC 93% Depth 48.0 km Updated 2014-05-05 05:28:41 UTC Author us Catalog us Contributor us Code us_b000qa69_mwr Principal Axes Axis Value Plunge Azimuth T 7.518 9 134 N 0.244 27 229 P -7.762 62 27 Nodal Planes Plane Strike Dip Rake NP1 66 60 -59 NP2 196 43 -131 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 50 45 90 3.92 0.3445 WVFGRD96 4.0 125 40 -90 3.94 0.3147 WVFGRD96 6.0 155 85 15 3.95 0.2983 WVFGRD96 8.0 355 35 25 4.01 0.3007 WVFGRD96 10.0 0 30 30 4.02 0.3348 WVFGRD96 12.0 65 80 -60 4.04 0.3761 WVFGRD96 14.0 65 75 -60 4.06 0.4211 WVFGRD96 16.0 65 70 -60 4.09 0.4634 WVFGRD96 18.0 65 70 -60 4.11 0.5026 WVFGRD96 20.0 65 70 -55 4.14 0.5373 WVFGRD96 22.0 65 70 -55 4.17 0.5690 WVFGRD96 24.0 65 70 -55 4.20 0.5973 WVFGRD96 26.0 65 65 -60 4.21 0.6224 WVFGRD96 28.0 65 65 -60 4.23 0.6451 WVFGRD96 30.0 65 65 -60 4.25 0.6633 WVFGRD96 32.0 65 65 -60 4.27 0.6781 WVFGRD96 34.0 65 60 -60 4.28 0.6928 WVFGRD96 36.0 65 60 -60 4.30 0.7041 WVFGRD96 38.0 65 55 -60 4.32 0.7094 WVFGRD96 40.0 60 55 -65 4.46 0.7353 WVFGRD96 42.0 60 55 -65 4.48 0.7464 WVFGRD96 44.0 60 55 -65 4.49 0.7515 WVFGRD96 46.0 60 55 -65 4.51 0.7520 WVFGRD96 48.0 60 55 -60 4.53 0.7499 WVFGRD96 50.0 60 55 -60 4.54 0.7439 WVFGRD96 52.0 60 55 -60 4.55 0.7347 WVFGRD96 54.0 60 55 -60 4.56 0.7227 WVFGRD96 56.0 65 55 -55 4.56 0.7097 WVFGRD96 58.0 65 55 -55 4.57 0.6947 WVFGRD96 60.0 65 55 -55 4.58 0.6779 WVFGRD96 62.0 65 60 -55 4.58 0.6599 WVFGRD96 64.0 70 60 -50 4.58 0.6440 WVFGRD96 66.0 70 60 -50 4.59 0.6284 WVFGRD96 68.0 70 60 -50 4.59 0.6128 WVFGRD96 70.0 70 60 -50 4.60 0.5968 WVFGRD96 72.0 70 60 -50 4.61 0.5801 WVFGRD96 74.0 75 65 -50 4.60 0.5655 WVFGRD96 76.0 75 65 -45 4.60 0.5522 WVFGRD96 78.0 75 65 -45 4.61 0.5389 WVFGRD96 80.0 70 65 -45 4.62 0.5255 WVFGRD96 82.0 70 65 -45 4.63 0.5129 WVFGRD96 84.0 70 65 -45 4.63 0.4998 WVFGRD96 86.0 70 65 -40 4.64 0.4877 WVFGRD96 88.0 70 70 -45 4.63 0.4795 WVFGRD96 90.0 70 70 -45 4.64 0.4715 WVFGRD96 92.0 70 70 -45 4.65 0.4636 WVFGRD96 94.0 70 70 -40 4.65 0.4559 WVFGRD96 96.0 70 70 -40 4.66 0.4488 WVFGRD96 98.0 70 75 -40 4.65 0.4426
The best solution is
WVFGRD96 46.0 60 55 -65 4.51 0.7520
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00