The ANSS event ID is ak0144vn0ngp and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0144vn0ngp/executive.
2014/04/16 20:24:24 62.894 -149.912 83.0 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/04/16 20:24:24:0 62.89 -149.91 83.0 5.1 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CRQ AK.CTG AK.DHY AK.FID AK.FYU AK.GHO AK.GLB AK.GLI AK.HDA AK.HOM AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PPD AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.TGL AK.TRF AK.WRH AT.MID AT.PMR AT.SVW2 AV.RED CN.DAWY IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.24e+23 dyne-cm Mw = 4.94 Z = 86 km Plane Strike Dip Rake NP1 100 85 25 NP2 8 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.24e+23 21 327 N 0.00e+00 65 111 P -3.24e+23 14 231 Moment Tensor: (dyne-cm) Component Value Mxx 7.69e+22 Mxy -2.79e+23 Mxz 1.37e+23 Myy -1.01e+23 Myz -1.79e+21 Mzz 2.37e+22 ###########--- ###############------- ### #############--------- #### T ##############--------- ###### ##############----------- ########################------------ ##########################------------ ###########################------------- ###########################------------- ---#########################-------------- ----------#################--------------- -------------------########--------------- ---------------------------####----------- --------------------------############## -------------------------############### ------------------------############## --- ----------------############## -- P ---------------############## --------------############# ---------------############# -----------########### -----######### Global CMT Convention Moment Tensor: R T P 2.37e+22 1.37e+23 1.79e+21 1.37e+23 7.69e+22 2.79e+23 1.79e+21 2.79e+23 -1.01e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140416202424/index.html |
STK = 100 DIP = 85 RAKE = 25 MW = 4.94 HS = 86.0
The NDK file is 20140416202424.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/04/16 20:24:24:0 62.89 -149.91 83.0 5.1 Alaska Stations used: AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CRQ AK.CTG AK.DHY AK.FID AK.FYU AK.GHO AK.GLB AK.GLI AK.HDA AK.HOM AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PPD AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AK.TGL AK.TRF AK.WRH AT.MID AT.PMR AT.SVW2 AV.RED CN.DAWY IM.IL31 IU.COLA Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.24e+23 dyne-cm Mw = 4.94 Z = 86 km Plane Strike Dip Rake NP1 100 85 25 NP2 8 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.24e+23 21 327 N 0.00e+00 65 111 P -3.24e+23 14 231 Moment Tensor: (dyne-cm) Component Value Mxx 7.69e+22 Mxy -2.79e+23 Mxz 1.37e+23 Myy -1.01e+23 Myz -1.79e+21 Mzz 2.37e+22 ###########--- ###############------- ### #############--------- #### T ##############--------- ###### ##############----------- ########################------------ ##########################------------ ###########################------------- ###########################------------- ---#########################-------------- ----------#################--------------- -------------------########--------------- ---------------------------####----------- --------------------------############## -------------------------############### ------------------------############## --- ----------------############## -- P ---------------############## --------------############# ---------------############# -----------########### -----######### Global CMT Convention Moment Tensor: R T P 2.37e+22 1.37e+23 1.79e+21 1.37e+23 7.69e+22 2.79e+23 1.79e+21 2.79e+23 -1.01e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140416202424/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 3.62e+16 N-m Magnitude 5.0 Percent DC 87% Depth 85.0 km Updated 2014-04-16 21:06:10 UTC Author us Catalog us Contributor us Code us_b000pn4i_mwr Principal Axes Axis Value Plunge Azimuth T 3.733 25 328 N -0.227 63 126 P -3.506 9 234 Nodal Planes Plane Strike Dip Rake NP1 103 79 25 NP2 8 65 168 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 5 85 -20 4.11 0.2424 WVFGRD96 4.0 185 90 15 4.19 0.2761 WVFGRD96 6.0 5 85 -10 4.24 0.2867 WVFGRD96 8.0 185 90 20 4.30 0.2922 WVFGRD96 10.0 5 80 -25 4.33 0.2983 WVFGRD96 12.0 5 80 -25 4.36 0.3012 WVFGRD96 14.0 5 85 -25 4.37 0.3017 WVFGRD96 16.0 95 85 20 4.37 0.3066 WVFGRD96 18.0 275 90 -20 4.39 0.3157 WVFGRD96 20.0 95 85 20 4.41 0.3276 WVFGRD96 22.0 95 85 20 4.44 0.3405 WVFGRD96 24.0 95 85 20 4.46 0.3531 WVFGRD96 26.0 95 85 15 4.48 0.3645 WVFGRD96 28.0 95 85 15 4.50 0.3753 WVFGRD96 30.0 100 80 15 4.53 0.3838 WVFGRD96 32.0 100 80 20 4.54 0.3924 WVFGRD96 34.0 100 80 20 4.56 0.4021 WVFGRD96 36.0 100 75 15 4.60 0.4112 WVFGRD96 38.0 100 75 15 4.63 0.4218 WVFGRD96 40.0 100 70 20 4.70 0.4371 WVFGRD96 42.0 100 70 20 4.72 0.4497 WVFGRD96 44.0 100 70 20 4.74 0.4621 WVFGRD96 46.0 100 70 20 4.76 0.4743 WVFGRD96 48.0 100 70 15 4.78 0.4874 WVFGRD96 50.0 100 70 15 4.80 0.5015 WVFGRD96 52.0 100 70 15 4.81 0.5163 WVFGRD96 54.0 100 75 20 4.82 0.5332 WVFGRD96 56.0 100 75 20 4.83 0.5504 WVFGRD96 58.0 100 75 20 4.85 0.5680 WVFGRD96 60.0 100 75 20 4.86 0.5861 WVFGRD96 62.0 100 75 20 4.87 0.6026 WVFGRD96 64.0 100 75 20 4.88 0.6179 WVFGRD96 66.0 100 75 20 4.89 0.6314 WVFGRD96 68.0 105 75 25 4.90 0.6442 WVFGRD96 70.0 105 75 25 4.91 0.6562 WVFGRD96 72.0 105 75 25 4.92 0.6661 WVFGRD96 74.0 105 75 25 4.93 0.6744 WVFGRD96 76.0 105 75 25 4.94 0.6810 WVFGRD96 78.0 100 80 25 4.93 0.6857 WVFGRD96 80.0 100 80 25 4.94 0.6892 WVFGRD96 82.0 100 80 25 4.94 0.6916 WVFGRD96 84.0 100 80 25 4.95 0.6922 WVFGRD96 86.0 100 85 25 4.94 0.6932 WVFGRD96 88.0 100 85 25 4.95 0.6929 WVFGRD96 90.0 100 85 25 4.95 0.6915 WVFGRD96 92.0 100 85 25 4.96 0.6888 WVFGRD96 94.0 100 85 25 4.96 0.6855 WVFGRD96 96.0 280 90 -25 4.95 0.6736 WVFGRD96 98.0 280 90 -25 4.96 0.6703 WVFGRD96 100.0 280 90 -25 4.96 0.6666
The best solution is
WVFGRD96 86.0 100 85 25 4.94 0.6932
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00