The ANSS event ID is usc000pe6v and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000pe6v/executive.
2014/04/10 12:21:34 44.591 -114.321 7.2 4 Idaho
USGS/SLU Moment Tensor Solution ENS 2014/04/10 12:21:34:0 44.59 -114.32 7.2 4.0 Idaho Stations used: IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.MFID IW.REDW IW.SNOW IW.TPAW MB.JTMT TA.H17A US.AHID US.BMO US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.LKWY US.MSO US.NEW US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.RDMU UU.SPU UU.TCU WY.YHB WY.YHH WY.YHL WY.YMP WY.YMR WY.YNM WY.YNR WY.YPP WY.YUF Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 9.89e+21 dyne-cm Mw = 3.93 Z = 11 km Plane Strike Dip Rake NP1 355 85 -40 NP2 89 50 -173 Principal Axes: Axis Value Plunge Azimuth T 9.89e+21 23 49 N 0.00e+00 50 169 P -9.89e+21 31 304 Moment Tensor: (dyne-cm) Component Value Mxx 1.32e+21 Mxy 7.53e+21 Mxz -1.12e+20 Myy -2.15e+20 Myz 6.29e+21 Mzz -1.10e+21 ------######## ----------############ -------------############### ---------------############### -----------------########### ### ---- -----------########### T #### ----- P -----------########### ##### ------ ------------################### ---------------------################### ----------------------#################### ----------------------#################### #---------------------###################- ##---------------------################--- ###-------------------##############---- ######----------------############------ #########------------########--------- ####################---------------- ###################--------------- #################------------- ################------------ #############--------- #########----- Global CMT Convention Moment Tensor: R T P -1.10e+21 -1.12e+20 -6.29e+21 -1.12e+20 1.32e+21 -7.53e+21 -6.29e+21 -7.53e+21 -2.15e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410122134/index.html |
STK = 355 DIP = 85 RAKE = -40 MW = 3.93 HS = 11.0
The NDK file is 20140410122134.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/04/10 12:21:34:0 44.59 -114.32 7.2 4.0 Idaho Stations used: IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.MFID IW.REDW IW.SNOW IW.TPAW MB.JTMT TA.H17A US.AHID US.BMO US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.LKWY US.MSO US.NEW US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.RDMU UU.SPU UU.TCU WY.YHB WY.YHH WY.YHL WY.YMP WY.YMR WY.YNM WY.YNR WY.YPP WY.YUF Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 9.89e+21 dyne-cm Mw = 3.93 Z = 11 km Plane Strike Dip Rake NP1 355 85 -40 NP2 89 50 -173 Principal Axes: Axis Value Plunge Azimuth T 9.89e+21 23 49 N 0.00e+00 50 169 P -9.89e+21 31 304 Moment Tensor: (dyne-cm) Component Value Mxx 1.32e+21 Mxy 7.53e+21 Mxz -1.12e+20 Myy -2.15e+20 Myz 6.29e+21 Mzz -1.10e+21 ------######## ----------############ -------------############### ---------------############### -----------------########### ### ---- -----------########### T #### ----- P -----------########### ##### ------ ------------################### ---------------------################### ----------------------#################### ----------------------#################### #---------------------###################- ##---------------------################--- ###-------------------##############---- ######----------------############------ #########------------########--------- ####################---------------- ###################--------------- #################------------- ################------------ #############--------- #########----- Global CMT Convention Moment Tensor: R T P -1.10e+21 -1.12e+20 -6.29e+21 -1.12e+20 1.32e+21 -7.53e+21 -6.29e+21 -7.53e+21 -2.15e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410122134/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 1.28e+15 N-m Magnitude 4.0 Percent DC 86% Depth 8.0 km Updated 2014-04-10 16:21:43 UTC Author us Catalog us Contributor us Code us_c000pe6v_mwr Principal Axes Axis Value Plunge Azimuth T 1.232 9 227 N 0.083 26 321 P -1.315 62 120 Nodal Planes Plane Strike Dip Rake NP1 158 59 -59 NP2 289 43 -131 |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 150 50 -80 3.72 0.3037 WVFGRD96 2.0 155 55 -75 3.81 0.3519 WVFGRD96 3.0 165 60 -60 3.85 0.3651 WVFGRD96 4.0 -5 85 -55 3.87 0.3875 WVFGRD96 5.0 180 90 50 3.86 0.4156 WVFGRD96 6.0 180 90 45 3.86 0.4364 WVFGRD96 7.0 180 90 45 3.87 0.4513 WVFGRD96 8.0 -5 85 -50 3.92 0.4630 WVFGRD96 9.0 355 85 -45 3.92 0.4720 WVFGRD96 10.0 350 75 -45 3.93 0.4773 WVFGRD96 11.0 355 85 -40 3.93 0.4799 WVFGRD96 12.0 355 85 -40 3.93 0.4795 WVFGRD96 13.0 185 75 40 3.95 0.4770 WVFGRD96 14.0 185 75 40 3.95 0.4740 WVFGRD96 15.0 180 80 35 3.96 0.4695 WVFGRD96 16.0 -5 85 -35 3.96 0.4638 WVFGRD96 17.0 180 80 35 3.97 0.4585 WVFGRD96 18.0 180 80 35 3.97 0.4518 WVFGRD96 19.0 180 80 30 3.98 0.4451 WVFGRD96 20.0 180 80 30 3.99 0.4382 WVFGRD96 21.0 180 80 30 4.00 0.4308 WVFGRD96 22.0 180 80 30 4.00 0.4231 WVFGRD96 23.0 180 80 30 4.01 0.4149 WVFGRD96 24.0 180 80 30 4.01 0.4062 WVFGRD96 25.0 180 80 30 4.02 0.3972 WVFGRD96 26.0 180 80 30 4.02 0.3879 WVFGRD96 27.0 180 80 30 4.03 0.3783 WVFGRD96 28.0 180 80 30 4.04 0.3683 WVFGRD96 29.0 180 80 25 4.04 0.3583
The best solution is
WVFGRD96 11.0 355 85 -40 3.93 0.4799
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00