The ANSS event ID is usc000nxm5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000nxm5/executive.
2014/03/31 16:30:27 62.288 -124.522 1.0 4.3 NT, Canada
USGS/SLU Moment Tensor Solution ENS 2014/03/31 16:30:27:0 62.29 -124.52 1.0 4.3 NT, Canada Stations used: AK.BESE AT.SIT AT.SKAG CN.DHRN CN.DLBC CN.EDZN CN.HYT CN.INK CN.WHY CN.YKW3 CN.YUK1 CN.YUK2 CN.YUK3 CN.YUK4 CN.YUK6 TA.C36M TA.EPYK US.EGAK US.WRAK Filtering commands used: cut o DIST/3.2 -100 o DIST/3.2 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 6 km Plane Strike Dip Rake NP1 310 55 75 NP2 155 38 110 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 75 176 N 0.00e+00 12 319 P -2.69e+22 9 51 Moment Tensor: (dyne-cm) Component Value Mxx -8.72e+21 Mxy -1.30e+22 Mxz -9.38e+21 Myy -1.57e+22 Myz -2.65e+21 Mzz 2.44e+22 -------------- #--------------------- ###------------------------- ###------------------------- ----##########---------------- P - -----##############------------ -- -----##################--------------- ------####################-------------- ------######################------------ -------########################----------- -------#########################---------- --------#########################--------- --------############ ###########-------- --------########### T ############------ ---------########## #############----- ---------##########################--- ---------#########################-- ----------#######################- ----------#################### -----------################# ------------########## -------------- Global CMT Convention Moment Tensor: R T P 2.44e+22 -9.38e+21 2.65e+21 -9.38e+21 -8.72e+21 1.30e+22 2.65e+21 1.30e+22 -1.57e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140331163027/index.html |
STK = 310 DIP = 55 RAKE = 75 MW = 4.22 HS = 6.0
The NDK file is 20140331163027.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.2 -100 o DIST/3.2 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 100 90 -60 4.20 0.5838 WVFGRD96 2.0 285 80 45 4.10 0.6122 WVFGRD96 3.0 285 80 45 4.13 0.6247 WVFGRD96 4.0 295 65 60 4.17 0.6250 WVFGRD96 5.0 310 55 75 4.21 0.6601 WVFGRD96 6.0 310 55 75 4.22 0.6619 WVFGRD96 7.0 300 60 60 4.19 0.6339 WVFGRD96 8.0 100 80 -20 4.11 0.6165 WVFGRD96 9.0 100 80 -20 4.12 0.6132 WVFGRD96 10.0 275 65 -20 4.12 0.6207 WVFGRD96 11.0 275 65 -20 4.13 0.6232 WVFGRD96 12.0 275 65 -15 4.13 0.6246 WVFGRD96 13.0 275 65 -15 4.13 0.6251 WVFGRD96 14.0 275 65 -15 4.14 0.6246 WVFGRD96 15.0 275 65 -15 4.14 0.6231 WVFGRD96 16.0 275 65 -15 4.15 0.6207 WVFGRD96 17.0 275 65 -15 4.16 0.6176 WVFGRD96 18.0 275 65 -15 4.16 0.6139 WVFGRD96 19.0 275 65 -15 4.17 0.6095 WVFGRD96 20.0 275 65 -15 4.19 0.6069 WVFGRD96 21.0 275 65 -15 4.19 0.6019 WVFGRD96 22.0 275 65 -15 4.20 0.5964 WVFGRD96 23.0 275 65 -15 4.21 0.5905 WVFGRD96 24.0 275 65 -15 4.21 0.5843 WVFGRD96 25.0 275 65 -15 4.22 0.5779 WVFGRD96 26.0 275 65 -15 4.23 0.5711 WVFGRD96 27.0 275 65 -15 4.23 0.5641 WVFGRD96 28.0 275 65 -20 4.24 0.5574 WVFGRD96 29.0 275 65 -20 4.25 0.5506
The best solution is
WVFGRD96 6.0 310 55 75 4.22 0.6619
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.2 -100 o DIST/3.2 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00