Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is usc000nkq4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000nkq4/executive.

2014/03/22 03:05:59 35.888 -97.299 4.5 3.9 Oklahoma

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 03:05:59:0  35.89  -97.30   4.5 3.9 Oklahoma
 
 Stations used:
   AG.FCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR GS.OK025 GS.OK026 
   GS.OK027 GS.OK028 GS.OK029 IU.CCM N4.N33B N4.P38B N4.R32B 
   N4.R40B N4.S39B N4.T35B N4.T42B N4.U38B N4.Z35B N4.Z38B 
   NM.MGMO NM.UALR OK.BCOK OK.CROK OK.FNO OK.U32A OK.X34A 
   TA.KSCO TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A 
   TA.X43A TA.Z41A US.CBKS US.KSU1 US.MIAR US.WMOK ZW.AZWP 
   ZW.AZWR 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      115    85   -15
   NP2      206    75   -175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21      7     162
    N   0.00e+00     74     277
    P  -6.53e+21     14      70

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.06e+21
       Mxy    -3.93e+21
       Mxz    -1.28e+21
       Myy    -4.76e+21
       Myz    -1.20e+21
       Mzz    -2.94e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ###################---              
              ####################--------           
             ###################-----------          
           ####################--------------        
          ####################----------------       
         -##################---------------   -      
        -----##############---------------- P --     
        --------##########-----------------   --     
       ------------######------------------------    
       ----------------#-------------------------    
       ----------------####----------------------    
       ----------------########------------------    
        --------------#############-------------     
        -------------###################--------     
         ------------########################--      
          ----------##########################       
           ---------#########################        
             ------########################          
              -----#######################           
                 --##############   ###              
                     ############ T                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.94e+20  -1.28e+21   1.20e+21 
 -1.28e+21   5.06e+21   3.93e+21 
  1.20e+21   3.93e+21  -4.76e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322030559/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 115
      DIP = 85
     RAKE = -15
       MW = 3.81
       HS = 4.0

The NDK file is 20140322030559.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 03:05:59:0  35.89  -97.30   4.5 3.9 Oklahoma
 
 Stations used:
   AG.FCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR GS.OK025 GS.OK026 
   GS.OK027 GS.OK028 GS.OK029 IU.CCM N4.N33B N4.P38B N4.R32B 
   N4.R40B N4.S39B N4.T35B N4.T42B N4.U38B N4.Z35B N4.Z38B 
   NM.MGMO NM.UALR OK.BCOK OK.CROK OK.FNO OK.U32A OK.X34A 
   TA.KSCO TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A 
   TA.X43A TA.Z41A US.CBKS US.KSU1 US.MIAR US.WMOK ZW.AZWP 
   ZW.AZWR 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      115    85   -15
   NP2      206    75   -175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21      7     162
    N   0.00e+00     74     277
    P  -6.53e+21     14      70

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.06e+21
       Mxy    -3.93e+21
       Mxz    -1.28e+21
       Myy    -4.76e+21
       Myz    -1.20e+21
       Mzz    -2.94e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ###################---              
              ####################--------           
             ###################-----------          
           ####################--------------        
          ####################----------------       
         -##################---------------   -      
        -----##############---------------- P --     
        --------##########-----------------   --     
       ------------######------------------------    
       ----------------#-------------------------    
       ----------------####----------------------    
       ----------------########------------------    
        --------------#############-------------     
        -------------###################--------     
         ------------########################--      
          ----------##########################       
           ---------#########################        
             ------########################          
              -----#######################           
                 --##############   ###              
                     ############ T                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.94e+20  -1.28e+21   1.20e+21 
 -1.28e+21   5.06e+21   3.93e+21 
  1.20e+21   3.93e+21  -4.76e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322030559/index.html
	
Moment
    8.71e+14 N-m
Magnitude
    3.9
Percent DC
    94%
Depth
    7.0 km
Updated
    2014-03-22 04:22:05 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_c000nkq4_mwr

Principal Axes
Axis	Value	Plunge	Azimuth
T	8.815	19 	163 
N	-0.222	66 	25 
P	-8.592	15 	258 
Nodal Planes
Plane	Strike	Dip	Rake
NP1	210 	88 	156 
NP2	301 	66 	2  

        


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   115    80   -15   3.65 0.4169
WVFGRD96    2.0   115    85   -25   3.76 0.5032
WVFGRD96    3.0   295    90    15   3.79 0.5255
WVFGRD96    4.0   115    85   -15   3.81 0.5328
WVFGRD96    5.0   295    90    10   3.83 0.5249
WVFGRD96    6.0   300    85    15   3.85 0.5154
WVFGRD96    7.0   300    85    10   3.87 0.5055
WVFGRD96    8.0   300    85    15   3.90 0.4959
WVFGRD96    9.0   300    85    15   3.92 0.4791
WVFGRD96   10.0   300    85    15   3.93 0.4621
WVFGRD96   11.0   300    80    20   3.95 0.4480
WVFGRD96   12.0   300    80    20   3.97 0.4392
WVFGRD96   13.0   300    80    25   3.98 0.4296
WVFGRD96   14.0   300    85    25   3.98 0.4216
WVFGRD96   15.0   300    85    25   3.99 0.4130
WVFGRD96   16.0   115    90   -25   3.99 0.4034
WVFGRD96   17.0   115    90   -25   4.00 0.3950
WVFGRD96   18.0   295    90    25   4.01 0.3866
WVFGRD96   19.0   115    90   -25   4.02 0.3778
WVFGRD96   20.0   115    85   -25   4.01 0.3688
WVFGRD96   21.0   115    85   -25   4.03 0.3608
WVFGRD96   22.0   115    85   -25   4.03 0.3519
WVFGRD96   23.0   115    85   -25   4.04 0.3441
WVFGRD96   24.0   295    90    25   4.06 0.3339
WVFGRD96   25.0   115    85   -25   4.05 0.3293
WVFGRD96   26.0   115    85   -25   4.06 0.3227
WVFGRD96   27.0   115    85   -25   4.07 0.3163
WVFGRD96   28.0   115    85   -25   4.07 0.3107
WVFGRD96   29.0   295    90    25   4.09 0.3031

The best solution is

WVFGRD96    4.0   115    85   -15   3.81 0.5328

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 03:59:13 PM CDT 2024