The ANSS event ID is ak01434q4y01 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01434q4y01/executive.
2014/03/09 16:11:23 61.030 -150.686 55.3 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/03/09 16:11:23:0 61.03 -150.69 55.3 3.7 Alaska Stations used: AK.CRQ AK.DHY AK.GLB AK.GLI AK.KNK AK.MCK AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AK.TGL AT.MENT AT.PMR AT.SVW2 Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 58 km Plane Strike Dip Rake NP1 190 75 -80 NP2 336 18 -123 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 29 272 N 0.00e+00 10 7 P -1.02e+22 59 114 Moment Tensor: (dyne-cm) Component Value Mxx -4.35e+20 Mxy 7.51e+20 Mxz 1.97e+21 Myy 5.47e+21 Myz -8.51e+21 Mzz -5.04e+21 -#####----#### #############----##### ###############--------##### ###############-----------#### ################--------------#### #################---------------#### #################-----------------#### #################-------------------#### #################--------------------### ##### ##########--------------------#### ##### T #########---------------------#### ##### #########---------- ---------### #################---------- P ---------### ###############----------- --------### ###############----------------------### ##############----------------------## #############---------------------## ############--------------------## ##########-------------------# #########-----------------## #######--------------# ###----------- Global CMT Convention Moment Tensor: R T P -5.04e+21 1.97e+21 8.51e+21 1.97e+21 -4.35e+20 -7.51e+20 8.51e+21 -7.51e+20 5.47e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140309161123/index.html |
STK = 190 DIP = 75 RAKE = -80 MW = 3.94 HS = 58.0
The NDK file is 20140309161123.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/03/09 16:11:23:0 61.03 -150.69 55.3 3.7 Alaska Stations used: AK.CRQ AK.DHY AK.GLB AK.GLI AK.KNK AK.MCK AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AK.TGL AT.MENT AT.PMR AT.SVW2 Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 58 km Plane Strike Dip Rake NP1 190 75 -80 NP2 336 18 -123 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 29 272 N 0.00e+00 10 7 P -1.02e+22 59 114 Moment Tensor: (dyne-cm) Component Value Mxx -4.35e+20 Mxy 7.51e+20 Mxz 1.97e+21 Myy 5.47e+21 Myz -8.51e+21 Mzz -5.04e+21 -#####----#### #############----##### ###############--------##### ###############-----------#### ################--------------#### #################---------------#### #################-----------------#### #################-------------------#### #################--------------------### ##### ##########--------------------#### ##### T #########---------------------#### ##### #########---------- ---------### #################---------- P ---------### ###############----------- --------### ###############----------------------### ##############----------------------## #############---------------------## ############--------------------## ##########-------------------# #########-----------------## #######--------------# ###----------- Global CMT Convention Moment Tensor: R T P -5.04e+21 1.97e+21 8.51e+21 1.97e+21 -4.35e+20 -7.51e+20 8.51e+21 -7.51e+20 5.47e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140309161123/index.html |
Moment 1.06e+15 N-m Magnitude 4.0 Percent DC 71% Depth 58.0 km Updated 2014-03-09 17:31:46 UTC Author us Catalog ak Contributor us Code us_c000n5yj_mwr Principal Axes Axis Value Plunge Azimuth T 0.987 33° 277° N 0.139 7° 12° P -1.126 56° 113° Nodal Planes Plane Strike Dip Rake NP1 194° 78° -82° NP2 341° 14° -122° |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 200 80 -10 3.10 0.1446 WVFGRD96 1.0 200 80 -10 3.14 0.1586 WVFGRD96 2.0 200 80 -15 3.25 0.2018 WVFGRD96 3.0 195 65 -20 3.34 0.2339 WVFGRD96 4.0 200 75 -15 3.37 0.2537 WVFGRD96 5.0 200 75 -5 3.41 0.2663 WVFGRD96 6.0 200 80 0 3.44 0.2745 WVFGRD96 7.0 200 80 0 3.46 0.2808 WVFGRD96 8.0 200 75 10 3.50 0.2899 WVFGRD96 9.0 200 75 10 3.51 0.2952 WVFGRD96 10.0 200 75 10 3.53 0.2960 WVFGRD96 11.0 200 80 10 3.54 0.2943 WVFGRD96 12.0 200 80 10 3.55 0.2925 WVFGRD96 13.0 200 80 20 3.56 0.2931 WVFGRD96 14.0 200 80 20 3.57 0.2970 WVFGRD96 15.0 20 85 35 3.55 0.3023 WVFGRD96 16.0 20 85 35 3.55 0.3098 WVFGRD96 17.0 20 90 35 3.56 0.3171 WVFGRD96 18.0 20 90 35 3.57 0.3244 WVFGRD96 19.0 20 90 35 3.57 0.3316 WVFGRD96 20.0 195 85 -35 3.59 0.3404 WVFGRD96 21.0 20 90 40 3.59 0.3447 WVFGRD96 22.0 20 90 40 3.60 0.3518 WVFGRD96 23.0 20 90 40 3.60 0.3589 WVFGRD96 24.0 20 90 40 3.61 0.3656 WVFGRD96 25.0 195 85 -40 3.62 0.3730 WVFGRD96 26.0 20 90 45 3.62 0.3785 WVFGRD96 27.0 20 90 45 3.63 0.3853 WVFGRD96 28.0 20 90 45 3.64 0.3917 WVFGRD96 29.0 20 90 50 3.65 0.3985 WVFGRD96 30.0 195 85 -50 3.65 0.4079 WVFGRD96 31.0 20 90 50 3.66 0.4116 WVFGRD96 32.0 195 85 -50 3.67 0.4210 WVFGRD96 33.0 195 85 -55 3.68 0.4271 WVFGRD96 34.0 195 85 -55 3.68 0.4328 WVFGRD96 35.0 195 85 -55 3.69 0.4380 WVFGRD96 36.0 195 80 -55 3.69 0.4426 WVFGRD96 37.0 195 80 -55 3.70 0.4480 WVFGRD96 38.0 195 80 -60 3.70 0.4519 WVFGRD96 39.0 195 80 -55 3.71 0.4558 WVFGRD96 40.0 195 80 -65 3.84 0.4557 WVFGRD96 41.0 195 80 -65 3.84 0.4600 WVFGRD96 42.0 195 80 -65 3.85 0.4635 WVFGRD96 43.0 195 80 -70 3.86 0.4672 WVFGRD96 44.0 195 80 -70 3.86 0.4702 WVFGRD96 45.0 195 80 -70 3.87 0.4728 WVFGRD96 46.0 195 80 -70 3.87 0.4760 WVFGRD96 47.0 195 80 -70 3.88 0.4778 WVFGRD96 48.0 190 75 -70 3.88 0.4805 WVFGRD96 49.0 190 75 -70 3.89 0.4828 WVFGRD96 50.0 190 75 -70 3.89 0.4849 WVFGRD96 51.0 190 75 -75 3.90 0.4872 WVFGRD96 52.0 190 75 -75 3.91 0.4888 WVFGRD96 53.0 190 75 -75 3.91 0.4907 WVFGRD96 54.0 190 75 -75 3.92 0.4916 WVFGRD96 55.0 190 75 -75 3.92 0.4925 WVFGRD96 56.0 190 75 -80 3.93 0.4930 WVFGRD96 57.0 190 75 -80 3.93 0.4935 WVFGRD96 58.0 190 75 -80 3.94 0.4937 WVFGRD96 59.0 190 75 -80 3.94 0.4929 WVFGRD96 60.0 0 15 -100 3.95 0.4920 WVFGRD96 61.0 190 75 -85 3.95 0.4914 WVFGRD96 62.0 0 15 -100 3.96 0.4907 WVFGRD96 63.0 10 15 -90 3.97 0.4888 WVFGRD96 64.0 10 15 -90 3.97 0.4874 WVFGRD96 65.0 10 15 -90 3.97 0.4860 WVFGRD96 66.0 45 15 -60 3.99 0.4841 WVFGRD96 67.0 45 15 -60 3.99 0.4829 WVFGRD96 68.0 45 15 -60 3.99 0.4817 WVFGRD96 69.0 60 15 -50 4.00 0.4794 WVFGRD96 70.0 50 15 -55 4.00 0.4784 WVFGRD96 71.0 65 15 -45 4.01 0.4767 WVFGRD96 72.0 65 15 -45 4.01 0.4743 WVFGRD96 73.0 65 15 -45 4.01 0.4727 WVFGRD96 74.0 75 20 -35 4.03 0.4700 WVFGRD96 75.0 75 20 -35 4.03 0.4680 WVFGRD96 76.0 75 20 -35 4.03 0.4662 WVFGRD96 77.0 75 20 -35 4.03 0.4634 WVFGRD96 78.0 85 20 -30 4.04 0.4611 WVFGRD96 79.0 85 20 -30 4.04 0.4591 WVFGRD96 80.0 90 25 -25 4.06 0.4564 WVFGRD96 81.0 90 25 -25 4.06 0.4545 WVFGRD96 82.0 90 25 -25 4.06 0.4527 WVFGRD96 83.0 90 25 -25 4.07 0.4502 WVFGRD96 84.0 90 25 -25 4.07 0.4472 WVFGRD96 85.0 90 25 -25 4.07 0.4450 WVFGRD96 86.0 90 25 -25 4.07 0.4422 WVFGRD96 87.0 95 30 -20 4.09 0.4387 WVFGRD96 88.0 95 30 -20 4.09 0.4370 WVFGRD96 89.0 95 30 -20 4.09 0.4345 WVFGRD96 90.0 95 30 -20 4.09 0.4320 WVFGRD96 91.0 95 30 -20 4.09 0.4291 WVFGRD96 92.0 95 30 -20 4.10 0.4268 WVFGRD96 93.0 95 30 -20 4.10 0.4238 WVFGRD96 94.0 95 30 -20 4.10 0.4206 WVFGRD96 95.0 100 30 -20 4.11 0.4177 WVFGRD96 96.0 100 35 -20 4.12 0.4151 WVFGRD96 97.0 100 35 -20 4.12 0.4126 WVFGRD96 98.0 105 35 -15 4.13 0.4099 WVFGRD96 99.0 105 35 -15 4.13 0.4079
The best solution is
WVFGRD96 58.0 190 75 -80 3.94 0.4937
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00