The ANSS event ID is ak0142xw9c94 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0142xw9c94/executive.
2014/03/05 03:13:19 62.081 -149.458 38.4 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/03/05 03:13:19:0 62.08 -149.46 38.4 4.4 Alaska Stations used: AK.BPAW AK.CCB AK.CRQ AK.DHY AK.FID AK.GHO AK.GLI AK.KNK AK.KTH AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TGL AK.TRF AK.WRH IU.COLA US.EGAK Filtering commands used: cut a -30 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.07e+22 dyne-cm Mw = 4.34 Z = 52 km Plane Strike Dip Rake NP1 200 65 -75 NP2 348 29 -119 Principal Axes: Axis Value Plunge Azimuth T 4.07e+22 19 279 N 0.00e+00 14 14 P -4.07e+22 67 137 Moment Tensor: (dyne-cm) Component Value Mxx -2.62e+21 Mxy -2.37e+21 Mxz 1.28e+22 Myy 3.28e+22 Myz -2.22e+22 Mzz -3.01e+22 #######------- ###################### ################-----####### ###############---------###### ################------------###### ################--------------###### ################----------------###### ################------------------###### ## ##########-------------------###### ### T #########---------------------###### ### #########---------------------###### ##############----------------------###### ##############---------- ---------###### ############----------- P ---------##### ############----------- ---------##### ###########----------------------##### #########----------------------##### ########----------------------#### #######--------------------### ######------------------#### ###----------------### -------------# Global CMT Convention Moment Tensor: R T P -3.01e+22 1.28e+22 2.22e+22 1.28e+22 -2.62e+21 2.37e+21 2.22e+22 2.37e+21 3.28e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140305031319/index.html |
STK = 200 DIP = 65 RAKE = -75 MW = 4.34 HS = 52.0
The NDK file is 20140305031319.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/03/05 03:13:19:0 62.08 -149.46 38.4 4.4 Alaska Stations used: AK.BPAW AK.CCB AK.CRQ AK.DHY AK.FID AK.GHO AK.GLI AK.KNK AK.KTH AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TGL AK.TRF AK.WRH IU.COLA US.EGAK Filtering commands used: cut a -30 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.07e+22 dyne-cm Mw = 4.34 Z = 52 km Plane Strike Dip Rake NP1 200 65 -75 NP2 348 29 -119 Principal Axes: Axis Value Plunge Azimuth T 4.07e+22 19 279 N 0.00e+00 14 14 P -4.07e+22 67 137 Moment Tensor: (dyne-cm) Component Value Mxx -2.62e+21 Mxy -2.37e+21 Mxz 1.28e+22 Myy 3.28e+22 Myz -2.22e+22 Mzz -3.01e+22 #######------- ###################### ################-----####### ###############---------###### ################------------###### ################--------------###### ################----------------###### ################------------------###### ## ##########-------------------###### ### T #########---------------------###### ### #########---------------------###### ##############----------------------###### ##############---------- ---------###### ############----------- P ---------##### ############----------- ---------##### ###########----------------------##### #########----------------------##### ########----------------------#### #######--------------------### ######------------------#### ###----------------### -------------# Global CMT Convention Moment Tensor: R T P -3.01e+22 1.28e+22 2.22e+22 1.28e+22 -2.62e+21 2.37e+21 2.22e+22 2.37e+21 3.28e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140305031319/index.html |
Moment 4.08e+15 N-m Magnitude 4.3 Percent DC 97% Depth 51.0 km Updated 2014-03-05 03:27:44 UTC Author us Catalog ak Contributor us Code us_b000n1bg_mwr Principal Axes Axis Value Plunge Azimuth T 4.058 17 276 N 0.046 15 10 P -4.104 67 140 Nodal Planes Plane Strike Dip Rake NP1 198 64 -73 NP2 344 31 -120 |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 20 40 -85 3.68 0.2842 WVFGRD96 4.0 75 65 -5 3.71 0.2775 WVFGRD96 6.0 75 65 15 3.76 0.3019 WVFGRD96 8.0 65 85 45 3.80 0.3381 WVFGRD96 10.0 65 80 45 3.82 0.3794 WVFGRD96 12.0 60 75 45 3.84 0.4146 WVFGRD96 14.0 55 75 45 3.87 0.4456 WVFGRD96 16.0 55 75 45 3.88 0.4698 WVFGRD96 18.0 55 75 40 3.91 0.4899 WVFGRD96 20.0 220 75 -45 3.92 0.5140 WVFGRD96 22.0 215 70 -45 3.96 0.5346 WVFGRD96 24.0 215 70 -45 3.98 0.5548 WVFGRD96 26.0 215 70 -45 4.00 0.5742 WVFGRD96 28.0 215 70 -45 4.02 0.5917 WVFGRD96 30.0 210 65 -50 4.04 0.6114 WVFGRD96 32.0 210 65 -55 4.06 0.6313 WVFGRD96 34.0 210 65 -55 4.08 0.6468 WVFGRD96 36.0 205 60 -60 4.11 0.6575 WVFGRD96 38.0 205 60 -60 4.13 0.6641 WVFGRD96 40.0 205 60 -70 4.24 0.6820 WVFGRD96 42.0 195 65 -80 4.26 0.6950 WVFGRD96 44.0 195 60 -80 4.28 0.7064 WVFGRD96 46.0 195 65 -80 4.29 0.7153 WVFGRD96 48.0 195 65 -80 4.31 0.7218 WVFGRD96 50.0 200 65 -75 4.32 0.7258 WVFGRD96 52.0 200 65 -75 4.34 0.7267 WVFGRD96 54.0 200 65 -70 4.35 0.7244 WVFGRD96 56.0 200 65 -70 4.36 0.7191 WVFGRD96 58.0 200 65 -70 4.37 0.7106 WVFGRD96 60.0 200 65 -70 4.38 0.6988 WVFGRD96 62.0 200 70 -70 4.38 0.6868 WVFGRD96 64.0 200 70 -70 4.39 0.6748 WVFGRD96 66.0 200 70 -70 4.39 0.6625 WVFGRD96 68.0 200 70 -70 4.40 0.6493 WVFGRD96 70.0 205 75 -65 4.40 0.6345 WVFGRD96 72.0 195 75 -80 4.40 0.6244 WVFGRD96 74.0 200 80 -75 4.40 0.6163 WVFGRD96 76.0 200 80 -75 4.41 0.6125 WVFGRD96 78.0 200 80 -75 4.41 0.6070 WVFGRD96 80.0 200 80 -75 4.42 0.6001 WVFGRD96 82.0 200 80 -75 4.42 0.5911 WVFGRD96 84.0 200 85 -75 4.42 0.5863 WVFGRD96 86.0 200 85 -75 4.43 0.5810 WVFGRD96 88.0 20 90 75 4.42 0.5615 WVFGRD96 90.0 20 90 75 4.43 0.5584 WVFGRD96 92.0 20 90 75 4.43 0.5541 WVFGRD96 94.0 20 90 75 4.43 0.5488 WVFGRD96 96.0 200 90 -70 4.44 0.5429 WVFGRD96 98.0 20 90 70 4.44 0.5369 WVFGRD96 100.0 200 90 -70 4.44 0.5294
The best solution is
WVFGRD96 52.0 200 65 -75 4.34 0.7267
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00