Location

Location ANSS

The ANSS event ID is usc000mrse and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000mrse/executive.

2014/02/17 04:54:59 35.776 -97.469 7.4 3.8 Oklahoma

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/02/17 04:54:59:0  35.78  -97.47   7.4 3.8 Oklahoma
 
 Stations used:
   AG.CCAR AG.HHAR AG.LCAR AG.WHAR GS.OK025 GS.OK026 N4.237B 
   NM.MGMO NM.UALR OK.U32A TA.435B TA.ABTX TA.MSTX TA.TUL1 
   TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.Z41A US.AMTX 
   US.CBKS US.KSU1 US.MIAR US.WMOK 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       33    81   -160
   NP2      300    70   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21      7     165
    N   0.00e+00     68      57
    P  -4.62e+21     21     258

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.09e+21
       Mxy    -1.92e+21
       Mxz    -2.46e+20
       Myy    -3.58e+21
       Myz     1.66e+21
       Mzz    -5.16e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #########################---           
             #########################-----          
           ##########################--------        
          -----######################---------       
         -------------##############-----------      
        -------------------########-------------     
        ----------------------####--------------     
       ------------------------------------------    
       ------------------------#####-------------    
       ---   -----------------########-----------    
       --- P ----------------###########---------    
        --   ---------------##############------     
        ------------------##################----     
         ----------------####################--      
          --------------######################       
           -----------#######################        
             -------#######################          
              ----########################           
                 ##############   #####              
                     ########## T #                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.16e+20  -2.46e+20  -1.66e+21 
 -2.46e+20   4.09e+21   1.92e+21 
 -1.66e+21   1.92e+21  -3.58e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140217045459/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 300
      DIP = 70
     RAKE = -10
       MW = 3.71
       HS = 3.0

The NDK file is 20140217045459.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/02/17 04:54:59:0  35.78  -97.47   7.4 3.8 Oklahoma
 
 Stations used:
   AG.CCAR AG.HHAR AG.LCAR AG.WHAR GS.OK025 GS.OK026 N4.237B 
   NM.MGMO NM.UALR OK.U32A TA.435B TA.ABTX TA.MSTX TA.TUL1 
   TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.Z41A US.AMTX 
   US.CBKS US.KSU1 US.MIAR US.WMOK 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       33    81   -160
   NP2      300    70   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21      7     165
    N   0.00e+00     68      57
    P  -4.62e+21     21     258

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.09e+21
       Mxy    -1.92e+21
       Mxz    -2.46e+20
       Myy    -3.58e+21
       Myz     1.66e+21
       Mzz    -5.16e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #########################---           
             #########################-----          
           ##########################--------        
          -----######################---------       
         -------------##############-----------      
        -------------------########-------------     
        ----------------------####--------------     
       ------------------------------------------    
       ------------------------#####-------------    
       ---   -----------------########-----------    
       --- P ----------------###########---------    
        --   ---------------##############------     
        ------------------##################----     
         ----------------####################--      
          --------------######################       
           -----------#######################        
             -------#######################          
              ----########################           
                 ##############   #####              
                     ########## T #                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.16e+20  -2.46e+20  -1.66e+21 
 -2.46e+20   4.09e+21   1.92e+21 
 -1.66e+21   1.92e+21  -3.58e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140217045459/index.html
	
Moment
6.56e+14 N-m
Magnitude
3.8
Percent DC
93%
Depth
4.0 km
Updated
2014-02-17 05:42:52 UTC
Author
us
Catalog
us
Contributor
us
Code
us_c000mrse_mwr
Principal Axes

Axis	Value	Plunge	Azimuth
T	6.456	5	351
N	0.202	60	90
P	-6.658	29	259
Nodal Planes

Plane	Strike	Dip	Rake
NP1	301	73	-25
NP2	39	66	-162


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   295    60   -25   3.50 0.6305
WVFGRD96    1.0   300    75     0   3.54 0.6150
WVFGRD96    2.0   300    60    -5   3.67 0.7253
WVFGRD96    3.0   300    70   -10   3.71 0.7412
WVFGRD96    4.0   120    90   -25   3.76 0.7337
WVFGRD96    5.0   300    90    20   3.79 0.7239
WVFGRD96    6.0   115    80   -25   3.83 0.7016
WVFGRD96    7.0   300    90    20   3.83 0.6580
WVFGRD96    8.0   120    85   -30   3.87 0.6324
WVFGRD96    9.0   310    75    35   3.87 0.6283
WVFGRD96   10.0   315    60    30   3.87 0.6411
WVFGRD96   11.0   315    60    30   3.89 0.6525
WVFGRD96   12.0   315    60    25   3.89 0.6582
WVFGRD96   13.0   315    60    25   3.90 0.6618
WVFGRD96   14.0   315    60    25   3.92 0.6616
WVFGRD96   15.0   315    55    25   3.92 0.6592
WVFGRD96   16.0   315    60    20   3.94 0.6576
WVFGRD96   17.0   315    55    20   3.94 0.6548
WVFGRD96   18.0   310    60    25   3.97 0.6503
WVFGRD96   19.0   310    55    20   3.98 0.6452
WVFGRD96   20.0   310    60    20   4.00 0.6383
WVFGRD96   21.0   310    55    15   4.00 0.6290
WVFGRD96   22.0   310    55    15   4.02 0.6173
WVFGRD96   23.0   310    55    15   4.03 0.6053
WVFGRD96   24.0   215    85   -15   4.03 0.5932
WVFGRD96   25.0   215    90   -20   4.03 0.5940
WVFGRD96   26.0    35    90    20   4.04 0.5927
WVFGRD96   27.0   215    90   -20   4.05 0.5915
WVFGRD96   28.0    35    90    15   4.05 0.5866
WVFGRD96   29.0    35    90    15   4.06 0.5862

The best solution is

WVFGRD96    3.0   300    70   -10   3.71 0.7412

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 03:16:12 PM CDT 2024