The ANSS event ID is se610610 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/se610610/executive.
2014/02/15 03:23:38 33.817 -82.092 5.2 4.1 Georgia
USGS/SLU Moment Tensor Solution ENS 2014/02/15 03:23:38:0 33.82 -82.09 5.2 4.1 Georgia Stations used: CO.BIRD CO.CASEE CO.HAW CO.PAULI ET.CPCT ET.FPAL IM.TKL N4.154A N4.255A N4.257A N4.456A N4.V48A N4.X48A N4.Y49A NM.CLTN TA.KMSC TA.Q54A TA.R53A TA.R55A TA.R58B TA.S51A TA.S54A TA.S57A TA.S58A TA.T49A TA.T52A TA.T57A TA.T59A TA.U54A TA.U56A TA.U59A TA.V51A TA.V52A TA.V53A TA.V55A TA.V58A TA.V60A TA.W50A TA.W52A TA.W57A TA.X51A TA.Y52A TA.Y57A TA.Y58A TA.Y60A TA.Z56A US.BLA US.GOGA US.NHSC US.TZTN Filtering commands used: cut a -20 a 160 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.84e+22 dyne-cm Mw = 4.11 Z = 5 km Plane Strike Dip Rake NP1 202 66 141 NP2 310 55 30 Principal Axes: Axis Value Plunge Azimuth T 1.84e+22 44 162 N 0.00e+00 45 355 P -1.84e+22 7 258 Moment Tensor: (dyne-cm) Component Value Mxx 7.78e+21 Mxy -6.53e+21 Mxz -8.29e+21 Myy -1.64e+22 Myz 4.98e+21 Mzz 8.65e+21 ############## ################------ #################----------- ################-------------- --------------###----------------- ----------------###----------------- ----------------#######--------------- ----------------##########-------------- ---------------#############------------ ---------------################----------- ---------------#################---------- --------------###################--------- -----------####################-------- P ----------######################------ ----------#######################----- ----------########### ###########--- ---------########### T ###########-- --------########### ###########- ------######################## -----####################### ---################### ############## Global CMT Convention Moment Tensor: R T P 8.65e+21 -8.29e+21 -4.98e+21 -8.29e+21 7.78e+21 6.53e+21 -4.98e+21 6.53e+21 -1.64e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140215032338/index.html |
STK = 310 DIP = 55 RAKE = 30 MW = 4.11 HS = 5.0
The NDK file is 20140215032338.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/02/15 03:23:38:0 33.82 -82.09 5.2 4.1 Georgia Stations used: CO.BIRD CO.CASEE CO.HAW CO.PAULI ET.CPCT ET.FPAL IM.TKL N4.154A N4.255A N4.257A N4.456A N4.V48A N4.X48A N4.Y49A NM.CLTN TA.KMSC TA.Q54A TA.R53A TA.R55A TA.R58B TA.S51A TA.S54A TA.S57A TA.S58A TA.T49A TA.T52A TA.T57A TA.T59A TA.U54A TA.U56A TA.U59A TA.V51A TA.V52A TA.V53A TA.V55A TA.V58A TA.V60A TA.W50A TA.W52A TA.W57A TA.X51A TA.Y52A TA.Y57A TA.Y58A TA.Y60A TA.Z56A US.BLA US.GOGA US.NHSC US.TZTN Filtering commands used: cut a -20 a 160 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.84e+22 dyne-cm Mw = 4.11 Z = 5 km Plane Strike Dip Rake NP1 202 66 141 NP2 310 55 30 Principal Axes: Axis Value Plunge Azimuth T 1.84e+22 44 162 N 0.00e+00 45 355 P -1.84e+22 7 258 Moment Tensor: (dyne-cm) Component Value Mxx 7.78e+21 Mxy -6.53e+21 Mxz -8.29e+21 Myy -1.64e+22 Myz 4.98e+21 Mzz 8.65e+21 ############## ################------ #################----------- ################-------------- --------------###----------------- ----------------###----------------- ----------------#######--------------- ----------------##########-------------- ---------------#############------------ ---------------################----------- ---------------#################---------- --------------###################--------- -----------####################-------- P ----------######################------ ----------#######################----- ----------########### ###########--- ---------########### T ###########-- --------########### ###########- ------######################## -----####################### ---################### ############## Global CMT Convention Moment Tensor: R T P 8.65e+21 -8.29e+21 -4.98e+21 -8.29e+21 7.78e+21 6.53e+21 -4.98e+21 6.53e+21 -1.64e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140215032338/index.html |
Moment 1.63e+15 N-m Magnitude 4.1 Percent DC 52% Depth 6.0 km Updated 2014-02-15 03:48:13 UTC Author us Catalog us Contributor us Code us_c000mr27_mwr Principal Axes Axis Value Plunge Azimuth T 1.436 64 352 N 0.338 26 161 P -1.774 5 253 Nodal Planes Plane Strike Dip Rake NP1 141 55 58 NP2 9 46 127 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 160 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 300 20 -10 4.22 0.3517 WVFGRD96 1.0 300 25 -10 4.19 0.3611 WVFGRD96 2.0 305 40 0 4.10 0.3835 WVFGRD96 3.0 310 50 20 4.09 0.4051 WVFGRD96 4.0 315 50 35 4.12 0.4265 WVFGRD96 5.0 310 55 30 4.11 0.4324 WVFGRD96 6.0 310 55 30 4.11 0.4293 WVFGRD96 7.0 310 60 25 4.11 0.4226 WVFGRD96 8.0 310 60 25 4.11 0.4137 WVFGRD96 9.0 305 65 20 4.12 0.4036 WVFGRD96 10.0 310 60 25 4.13 0.3929 WVFGRD96 11.0 310 60 25 4.14 0.3797 WVFGRD96 12.0 305 65 20 4.15 0.3671 WVFGRD96 13.0 305 65 20 4.15 0.3559 WVFGRD96 14.0 305 65 20 4.16 0.3454 WVFGRD96 15.0 305 65 20 4.16 0.3353 WVFGRD96 16.0 305 65 20 4.17 0.3258 WVFGRD96 17.0 305 65 20 4.18 0.3164 WVFGRD96 18.0 305 65 20 4.18 0.3073 WVFGRD96 19.0 305 65 20 4.19 0.2988 WVFGRD96 20.0 310 60 25 4.20 0.2903 WVFGRD96 21.0 310 60 25 4.21 0.2809 WVFGRD96 22.0 310 60 25 4.21 0.2721 WVFGRD96 23.0 310 60 25 4.22 0.2638 WVFGRD96 24.0 310 60 25 4.22 0.2559 WVFGRD96 25.0 310 60 25 4.23 0.2493 WVFGRD96 26.0 310 60 25 4.23 0.2439 WVFGRD96 27.0 310 60 25 4.24 0.2401 WVFGRD96 28.0 310 60 25 4.24 0.2377 WVFGRD96 29.0 310 60 20 4.25 0.2365
The best solution is
WVFGRD96 5.0 310 55 30 4.11 0.4324
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 160 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00