The ANSS event ID is usc000mlar and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usc000mlar/executive.
2014/02/09 02:16:01 35.893 -97.292 5.0 4.1 Oklahoma
USGS/SLU Moment Tensor Solution ENS 2014/02/09 02:16:01:0 35.89 -97.29 5.0 4.1 Oklahoma Stations used: AG.CCAR AG.HHAR AG.LCAR AG.WHAR GS.OK025 GS.OK026 IU.CCM NM.MGMO NM.UALR OK.CROK OK.U32A TA.435B TA.ABTX TA.KSCO TA.MSTX TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.Z41A US.AMTX US.CBKS US.KSU1 US.MIAR US.WMOK ZW.AZHL ZW.AZLE ZW.AZWP ZW.AZWR Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 3 km Plane Strike Dip Rake NP1 115 70 -30 NP2 216 62 -157 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 5 167 N 0.00e+00 54 264 P -1.66e+22 35 73 Moment Tensor: (dyne-cm) Component Value Mxx 1.47e+22 Mxy -6.64e+21 Mxz -3.68e+21 Myy -9.39e+21 Myz -7.14e+21 Mzz -5.33e+21 ############## ###################### ######################------ ###################----------- ###################--------------- ##################------------------ #################--------------------- ---#############--------------- ------ ----###########---------------- P ------ -------#######------------------ ------- ----------###----------------------------- ------------------------------------------ -----------####--------------------------- ---------#########---------------------- ---------#############------------------ -------#####################---------- ------############################## -----############################# --############################ --########################## ############## ##### ########## T # Global CMT Convention Moment Tensor: R T P -5.33e+21 -3.68e+21 7.14e+21 -3.68e+21 1.47e+22 6.64e+21 7.14e+21 6.64e+21 -9.39e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140209021601/index.html |
STK = 115 DIP = 70 RAKE = -30 MW = 4.08 HS = 3.0
The NDK file is 20140209021601.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/02/09 02:16:01:0 35.89 -97.29 5.0 4.1 Oklahoma Stations used: AG.CCAR AG.HHAR AG.LCAR AG.WHAR GS.OK025 GS.OK026 IU.CCM NM.MGMO NM.UALR OK.CROK OK.U32A TA.435B TA.ABTX TA.KSCO TA.MSTX TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.Z41A US.AMTX US.CBKS US.KSU1 US.MIAR US.WMOK ZW.AZHL ZW.AZLE ZW.AZWP ZW.AZWR Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 3 km Plane Strike Dip Rake NP1 115 70 -30 NP2 216 62 -157 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 5 167 N 0.00e+00 54 264 P -1.66e+22 35 73 Moment Tensor: (dyne-cm) Component Value Mxx 1.47e+22 Mxy -6.64e+21 Mxz -3.68e+21 Myy -9.39e+21 Myz -7.14e+21 Mzz -5.33e+21 ############## ###################### ######################------ ###################----------- ###################--------------- ##################------------------ #################--------------------- ---#############--------------- ------ ----###########---------------- P ------ -------#######------------------ ------- ----------###----------------------------- ------------------------------------------ -----------####--------------------------- ---------#########---------------------- ---------#############------------------ -------#####################---------- ------############################## -----############################# --############################ --########################## ############## ##### ########## T # Global CMT Convention Moment Tensor: R T P -5.33e+21 -3.68e+21 7.14e+21 -3.68e+21 1.47e+22 6.64e+21 7.14e+21 6.64e+21 -9.39e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140209021601/index.html |
Moment 1.89e+15 N-m Magnitude 4.1 Percent DC 89% Depth 5.0 km Updated 2014-02-09 04:00:05 UTC Author us Catalog us Contributor us Code us_c000mlar_mwr Principal Axes Axis Value Plunge Azimuth T 1.940 3 343 N -0.105 63 248 P -1.835 27 75 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 295 60 -25 3.93 0.4193 WVFGRD96 1.0 300 70 -20 3.93 0.4378 WVFGRD96 2.0 115 70 -30 4.05 0.5330 WVFGRD96 3.0 115 70 -30 4.08 0.5475 WVFGRD96 4.0 120 75 -15 4.08 0.5469 WVFGRD96 5.0 120 80 -15 4.10 0.5413 WVFGRD96 6.0 305 75 10 4.13 0.5361 WVFGRD96 7.0 305 75 10 4.15 0.5282 WVFGRD96 8.0 120 80 -20 4.17 0.5113 WVFGRD96 9.0 305 70 15 4.19 0.5041 WVFGRD96 10.0 305 70 15 4.20 0.4945 WVFGRD96 11.0 305 70 15 4.21 0.4843 WVFGRD96 12.0 305 75 20 4.22 0.4749 WVFGRD96 13.0 305 75 20 4.23 0.4666 WVFGRD96 14.0 305 75 20 4.23 0.4583 WVFGRD96 15.0 305 70 15 4.24 0.4502 WVFGRD96 16.0 305 75 15 4.25 0.4423 WVFGRD96 17.0 305 75 15 4.26 0.4345 WVFGRD96 18.0 305 75 15 4.26 0.4267 WVFGRD96 19.0 305 75 15 4.27 0.4192 WVFGRD96 20.0 305 75 15 4.28 0.4117 WVFGRD96 21.0 305 75 15 4.28 0.4034 WVFGRD96 22.0 305 75 15 4.29 0.3955 WVFGRD96 23.0 305 75 20 4.29 0.3880 WVFGRD96 24.0 305 75 20 4.30 0.3816 WVFGRD96 25.0 305 75 15 4.31 0.3754 WVFGRD96 26.0 305 75 20 4.31 0.3700 WVFGRD96 27.0 305 75 20 4.32 0.3650 WVFGRD96 28.0 305 75 20 4.32 0.3598 WVFGRD96 29.0 300 75 15 4.33 0.3550
The best solution is
WVFGRD96 3.0 115 70 -30 4.08 0.5475
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00