The ANSS event ID is ak0141fma9kq and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0141fma9kq/executive.
2014/01/31 21:20:54 58.118 -151.755 49.2 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/01/31 21:20:54:0 58.12 -151.76 49.2 4.2 Alaska Stations used: AK.BRLK AK.BRSE AK.CNP AK.EYAK AK.FID AK.GHO AK.HOM AK.PWL AK.WAT1 AT.OHAK AT.PMR AT.SVW2 AT.TTA II.KDAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 41 km Plane Strike Dip Rake NP1 335 90 -150 NP2 245 60 0 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 21 106 N 0.00e+00 60 335 P -2.19e+22 21 204 Moment Tensor: (dyne-cm) Component Value Mxx -1.45e+22 Mxy -1.22e+22 Mxz 4.62e+21 Myy 1.45e+22 Myz 9.91e+21 Mzz 0.00e+00 -------------- ###------------------- #######--------------------- #########--------------------- ###########----------------------- #############--------------####----- ###############----################### ################-####################### #############-----###################### ###########---------###################### #########------------##################### #######--------------##################### #####-----------------############## ### ###-------------------############# T ## ##---------------------############ ## -----------------------############### -----------------------############# -----------------------########### ------- -----------######### ------ P ------------####### --- -------------### -------------- Global CMT Convention Moment Tensor: R T P 0.00e+00 4.62e+21 -9.91e+21 4.62e+21 -1.45e+22 1.22e+22 -9.91e+21 1.22e+22 1.45e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140131212054/index.html |
STK = 245 DIP = 60 RAKE = 0 MW = 4.16 HS = 41.0
The NDK file is 20140131212054.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/01/31 21:20:54:0 58.12 -151.76 49.2 4.2 Alaska Stations used: AK.BRLK AK.BRSE AK.CNP AK.EYAK AK.FID AK.GHO AK.HOM AK.PWL AK.WAT1 AT.OHAK AT.PMR AT.SVW2 AT.TTA II.KDAK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 41 km Plane Strike Dip Rake NP1 335 90 -150 NP2 245 60 0 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 21 106 N 0.00e+00 60 335 P -2.19e+22 21 204 Moment Tensor: (dyne-cm) Component Value Mxx -1.45e+22 Mxy -1.22e+22 Mxz 4.62e+21 Myy 1.45e+22 Myz 9.91e+21 Mzz 0.00e+00 -------------- ###------------------- #######--------------------- #########--------------------- ###########----------------------- #############--------------####----- ###############----################### ################-####################### #############-----###################### ###########---------###################### #########------------##################### #######--------------##################### #####-----------------############## ### ###-------------------############# T ## ##---------------------############ ## -----------------------############### -----------------------############# -----------------------########### ------- -----------######### ------ P ------------####### --- -------------### -------------- Global CMT Convention Moment Tensor: R T P 0.00e+00 4.62e+21 -9.91e+21 4.62e+21 -1.45e+22 1.22e+22 -9.91e+21 1.22e+22 1.45e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140131212054/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 2.34e+15 N-m Magnitude 4.2 Percent DC 90% Depth 41.0 km Updated 2014-01-31 21:57:33 UTC Author us Catalog ak Contributor us Code us_c000meyf_mwr Principal Axes Axis Value Plunge Azimuth T 2.281 16 290 N 0.108 56 47 P -2.389 28 191 Nodal Planes Plane Strike Dip Rake NP1 239 82 -33 NP2 334 58 -171 |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 20 45 -90 3.59 0.2634 WVFGRD96 3.0 260 55 45 3.65 0.3607 WVFGRD96 5.0 50 55 -10 3.69 0.4145 WVFGRD96 7.0 55 65 0 3.73 0.4676 WVFGRD96 9.0 55 60 -5 3.78 0.4988 WVFGRD96 11.0 55 65 -5 3.81 0.5119 WVFGRD96 13.0 240 65 -15 3.84 0.5363 WVFGRD96 15.0 245 65 -5 3.87 0.5646 WVFGRD96 17.0 245 65 0 3.89 0.5931 WVFGRD96 19.0 245 65 5 3.91 0.6192 WVFGRD96 21.0 245 65 5 3.93 0.6431 WVFGRD96 23.0 245 65 5 3.95 0.6625 WVFGRD96 25.0 245 65 5 3.97 0.6779 WVFGRD96 27.0 245 65 5 3.98 0.6922 WVFGRD96 29.0 245 65 0 4.00 0.7034 WVFGRD96 31.0 245 65 0 4.02 0.7102 WVFGRD96 33.0 245 65 0 4.04 0.7156 WVFGRD96 35.0 245 70 -5 4.07 0.7171 WVFGRD96 37.0 245 70 -5 4.09 0.7199 WVFGRD96 39.0 245 70 -5 4.11 0.7200 WVFGRD96 41.0 245 60 0 4.16 0.7205 WVFGRD96 43.0 245 60 0 4.17 0.7159 WVFGRD96 45.0 245 65 -5 4.20 0.7111 WVFGRD96 47.0 245 65 -5 4.21 0.7026 WVFGRD96 49.0 245 65 -5 4.22 0.6915 WVFGRD96 51.0 245 65 -5 4.23 0.6804 WVFGRD96 53.0 245 65 -5 4.24 0.6679 WVFGRD96 55.0 245 65 -5 4.25 0.6552 WVFGRD96 57.0 245 65 -5 4.26 0.6420 WVFGRD96 59.0 245 65 0 4.25 0.6283 WVFGRD96 61.0 245 65 -5 4.27 0.6154 WVFGRD96 63.0 245 65 0 4.26 0.6023 WVFGRD96 65.0 25 65 -80 4.32 0.5902 WVFGRD96 67.0 30 70 -75 4.31 0.5897 WVFGRD96 69.0 30 70 -75 4.31 0.5889 WVFGRD96 71.0 30 70 -75 4.31 0.5881 WVFGRD96 73.0 30 70 -75 4.31 0.5858 WVFGRD96 75.0 30 70 -75 4.31 0.5829 WVFGRD96 77.0 30 75 -75 4.32 0.5823 WVFGRD96 79.0 30 75 -75 4.32 0.5819 WVFGRD96 81.0 30 75 -75 4.32 0.5788 WVFGRD96 83.0 30 75 -75 4.32 0.5787 WVFGRD96 85.0 30 75 -75 4.32 0.5780 WVFGRD96 87.0 30 75 -75 4.32 0.5748 WVFGRD96 89.0 30 75 -75 4.32 0.5715 WVFGRD96 91.0 30 75 -75 4.32 0.5693 WVFGRD96 93.0 30 75 -70 4.31 0.5683 WVFGRD96 95.0 30 75 -70 4.32 0.5661 WVFGRD96 97.0 30 80 -75 4.33 0.5640 WVFGRD96 99.0 30 80 -75 4.33 0.5636
The best solution is
WVFGRD96 41.0 245 60 0 4.16 0.7205
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00