The ANSS event ID is ak014gluxf3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak014gluxf3/executive.
2014/01/10 04:17:37 62.236 -149.337 42.7 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2014/01/10 04:17:37:0 62.24 -149.34 42.7 3.8 Alaska Stations used: AK.DHY AK.FIRE AK.KNK AK.KTH AK.PAX AK.PPLA AK.RND AK.SAW AK.SKN AK.SSN AK.WAT1 AK.WAT4 AK.WAT6 AK.WAT7 AT.PMR Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.40e+22 dyne-cm Mw = 4.03 Z = 60 km Plane Strike Dip Rake NP1 210 60 -75 NP2 2 33 -114 Principal Axes: Axis Value Plunge Azimuth T 1.40e+22 14 289 N 0.00e+00 13 22 P -1.40e+22 71 154 Moment Tensor: (dyne-cm) Component Value Mxx 2.10e+20 Mxy -3.49e+21 Mxz 4.94e+21 Myy 1.15e+22 Myz -4.94e+21 Mzz -1.17e+22 ###########--- #################---## ###################---###### #################--------##### #################-----------###### ################--------------###### ############-----------------###### # T ###########------------------####### # ##########--------------------###### ##############---------------------####### #############----------------------####### ############-----------------------####### ###########----------- ----------####### ##########----------- P ---------####### #########------------ ---------####### ########-----------------------####### #######-----------------------###### ######----------------------###### ####--------------------###### ###-------------------###### -----------------##### ----------#### Global CMT Convention Moment Tensor: R T P -1.17e+22 4.94e+21 4.94e+21 4.94e+21 2.10e+20 3.49e+21 4.94e+21 3.49e+21 1.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140110041737/index.html |
STK = 210 DIP = 60 RAKE = -75 MW = 4.03 HS = 60.0
The NDK file is 20140110041737.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2014/01/10 04:17:37:0 62.24 -149.34 42.7 3.8 Alaska Stations used: AK.DHY AK.FIRE AK.KNK AK.KTH AK.PAX AK.PPLA AK.RND AK.SAW AK.SKN AK.SSN AK.WAT1 AK.WAT4 AK.WAT6 AK.WAT7 AT.PMR Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.40e+22 dyne-cm Mw = 4.03 Z = 60 km Plane Strike Dip Rake NP1 210 60 -75 NP2 2 33 -114 Principal Axes: Axis Value Plunge Azimuth T 1.40e+22 14 289 N 0.00e+00 13 22 P -1.40e+22 71 154 Moment Tensor: (dyne-cm) Component Value Mxx 2.10e+20 Mxy -3.49e+21 Mxz 4.94e+21 Myy 1.15e+22 Myz -4.94e+21 Mzz -1.17e+22 ###########--- #################---## ###################---###### #################--------##### #################-----------###### ################--------------###### ############-----------------###### # T ###########------------------####### # ##########--------------------###### ##############---------------------####### #############----------------------####### ############-----------------------####### ###########----------- ----------####### ##########----------- P ---------####### #########------------ ---------####### ########-----------------------####### #######-----------------------###### ######----------------------###### ####--------------------###### ###-------------------###### -----------------##### ----------#### Global CMT Convention Moment Tensor: R T P -1.17e+22 4.94e+21 4.94e+21 4.94e+21 2.10e+20 3.49e+21 4.94e+21 3.49e+21 1.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140110041737/index.html |
Moment 1.51e+15 N-m Magnitude 4.1 Percent DC 80% Depth 59.0 km Updated 2014-01-10 15:02:47 UTC Author us Catalog ak Contributor us Code us_c000lztg_mwr Principal Axes Axis Value Plunge Azimuth T 1.437 14 289 N 0.137 13 23 P -1.573 70 155 Nodal Planes Plane Strike Dip Rake NP1 210 60 -75 NP2 1 33 -115 |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 5 45 90 3.23 0.1844 WVFGRD96 1.0 185 45 90 3.26 0.1807 WVFGRD96 2.0 5 45 90 3.38 0.2391 WVFGRD96 3.0 5 45 90 3.43 0.2365 WVFGRD96 4.0 100 80 25 3.39 0.2221 WVFGRD96 5.0 95 90 30 3.42 0.2309 WVFGRD96 6.0 95 90 30 3.44 0.2406 WVFGRD96 7.0 275 85 -30 3.46 0.2522 WVFGRD96 8.0 260 80 -30 3.49 0.2604 WVFGRD96 9.0 255 70 -30 3.51 0.2711 WVFGRD96 10.0 225 75 -45 3.50 0.2811 WVFGRD96 11.0 225 75 -45 3.51 0.2943 WVFGRD96 12.0 225 70 -45 3.53 0.3066 WVFGRD96 13.0 225 70 -45 3.54 0.3177 WVFGRD96 14.0 225 70 -40 3.55 0.3289 WVFGRD96 15.0 225 70 -40 3.56 0.3395 WVFGRD96 16.0 225 70 -40 3.57 0.3490 WVFGRD96 17.0 225 70 -40 3.58 0.3587 WVFGRD96 18.0 225 70 -40 3.59 0.3679 WVFGRD96 19.0 225 70 -40 3.60 0.3766 WVFGRD96 20.0 225 70 -40 3.61 0.3848 WVFGRD96 21.0 225 70 -40 3.62 0.3914 WVFGRD96 22.0 225 70 -45 3.64 0.3987 WVFGRD96 23.0 225 70 -45 3.64 0.4057 WVFGRD96 24.0 225 70 -45 3.65 0.4120 WVFGRD96 25.0 225 70 -45 3.66 0.4180 WVFGRD96 26.0 225 70 -45 3.67 0.4234 WVFGRD96 27.0 225 70 -45 3.68 0.4281 WVFGRD96 28.0 225 70 -45 3.69 0.4320 WVFGRD96 29.0 225 70 -45 3.69 0.4355 WVFGRD96 30.0 225 70 -45 3.70 0.4384 WVFGRD96 31.0 225 70 -45 3.71 0.4405 WVFGRD96 32.0 225 70 -45 3.72 0.4418 WVFGRD96 33.0 225 70 -45 3.72 0.4427 WVFGRD96 34.0 220 70 -50 3.73 0.4441 WVFGRD96 35.0 220 70 -50 3.74 0.4455 WVFGRD96 36.0 220 70 -50 3.75 0.4471 WVFGRD96 37.0 220 70 -50 3.75 0.4489 WVFGRD96 38.0 220 70 -50 3.76 0.4502 WVFGRD96 39.0 220 65 -50 3.78 0.4517 WVFGRD96 40.0 220 70 -60 3.87 0.4504 WVFGRD96 41.0 220 70 -60 3.88 0.4545 WVFGRD96 42.0 215 65 -65 3.90 0.4595 WVFGRD96 43.0 220 65 -60 3.90 0.4651 WVFGRD96 44.0 215 60 -65 3.92 0.4710 WVFGRD96 45.0 215 60 -65 3.93 0.4776 WVFGRD96 46.0 215 60 -65 3.94 0.4840 WVFGRD96 47.0 215 60 -65 3.95 0.4896 WVFGRD96 48.0 215 60 -65 3.95 0.4945 WVFGRD96 49.0 210 60 -70 3.97 0.5007 WVFGRD96 50.0 210 60 -70 3.97 0.5068 WVFGRD96 51.0 210 60 -70 3.98 0.5125 WVFGRD96 52.0 210 60 -70 3.99 0.5173 WVFGRD96 53.0 210 60 -75 4.00 0.5219 WVFGRD96 54.0 210 60 -75 4.01 0.5260 WVFGRD96 55.0 210 60 -75 4.01 0.5290 WVFGRD96 56.0 210 60 -75 4.02 0.5315 WVFGRD96 57.0 210 60 -75 4.02 0.5334 WVFGRD96 58.0 210 60 -75 4.02 0.5346 WVFGRD96 59.0 210 60 -75 4.03 0.5350 WVFGRD96 60.0 210 60 -75 4.03 0.5351 WVFGRD96 61.0 210 60 -75 4.03 0.5345 WVFGRD96 62.0 210 60 -75 4.03 0.5330 WVFGRD96 63.0 210 60 -75 4.04 0.5312 WVFGRD96 64.0 210 60 -75 4.04 0.5288 WVFGRD96 65.0 210 60 -75 4.04 0.5255 WVFGRD96 66.0 210 60 -75 4.04 0.5222 WVFGRD96 67.0 210 60 -75 4.04 0.5185 WVFGRD96 68.0 210 60 -75 4.04 0.5136 WVFGRD96 69.0 210 60 -75 4.04 0.5095 WVFGRD96 70.0 215 65 -75 4.04 0.5045 WVFGRD96 71.0 215 65 -75 4.04 0.5002 WVFGRD96 72.0 215 65 -70 4.03 0.4961 WVFGRD96 73.0 215 65 -70 4.03 0.4916 WVFGRD96 74.0 215 65 -70 4.03 0.4867 WVFGRD96 75.0 210 65 -75 4.04 0.4821 WVFGRD96 76.0 210 65 -75 4.03 0.4780 WVFGRD96 77.0 210 65 -75 4.03 0.4740 WVFGRD96 78.0 210 65 -75 4.03 0.4695 WVFGRD96 79.0 215 70 -80 4.04 0.4655 WVFGRD96 80.0 215 70 -80 4.04 0.4621 WVFGRD96 81.0 215 70 -80 4.04 0.4586 WVFGRD96 82.0 215 70 -80 4.04 0.4550 WVFGRD96 83.0 215 70 -80 4.04 0.4511 WVFGRD96 84.0 215 70 -80 4.04 0.4474 WVFGRD96 85.0 215 70 -80 4.04 0.4432 WVFGRD96 86.0 215 70 -80 4.04 0.4394 WVFGRD96 87.0 215 70 -80 4.04 0.4350 WVFGRD96 88.0 215 70 -80 4.03 0.4311 WVFGRD96 89.0 215 70 -80 4.03 0.4268 WVFGRD96 90.0 215 70 -80 4.03 0.4227 WVFGRD96 91.0 215 70 -80 4.03 0.4184 WVFGRD96 92.0 220 70 -75 4.03 0.4146 WVFGRD96 93.0 220 70 -75 4.03 0.4106 WVFGRD96 94.0 210 65 -80 4.03 0.4076 WVFGRD96 95.0 210 65 -80 4.03 0.4044 WVFGRD96 96.0 210 65 -80 4.02 0.4018 WVFGRD96 97.0 210 65 -80 4.02 0.3987 WVFGRD96 98.0 210 65 -80 4.02 0.3959 WVFGRD96 99.0 210 65 -80 4.02 0.3929
The best solution is
WVFGRD96 60.0 210 60 -75 4.03 0.5351
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00