The ANSS event ID is nn00432876 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00432876/executive.
2014/01/02 12:04:50 39.057 -118.108 6.4 3.9 Nevada
USGS/SLU Moment Tensor Solution
ENS 2014/01/02 12:04:50:0 39.06 -118.11 6.4 3.9 Nevada
Stations used:
BK.CMB CI.CWC CI.GRA CI.MLAC CI.MPM CI.SHO CI.SLA CI.TIN
CI.TUQ IM.NV31 LB.DAC NN.BEK NN.OMMB NN.PNT NN.RUB NN.RYN
NN.SHP NN.VCN NN.WAK NN.YER TA.O03E TA.R11A US.DUG US.ELK
US.TPNV US.WVOR UU.PSUT
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.88e+21 dyne-cm
Mw = 3.45
Z = 10 km
Plane Strike Dip Rake
NP1 80 80 45
NP2 340 46 166
Principal Axes:
Axis Value Plunge Azimuth
T 1.88e+21 38 311
N 0.00e+00 44 90
P -1.88e+21 22 203
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.90e+20
Mxy -1.15e+21
Mxz 1.19e+21
Myy 4.35e+20
Myz -4.45e+20
Mzz 4.56e+20
#-------------
##########------------
################------------
###################-----------
#######################-----------
####### ###############-----------
######## T ################-----------
######### #################-----------
##############################----------
################################--------##
################################---#######
#############################----#########
####################-------------#########
--------------------------------########
--------------------------------########
-------------------------------#######
------------------------------######
----------------------------######
------- ----------------####
------ P ---------------####
--- --------------##
--------------
Global CMT Convention Moment Tensor:
R T P
4.56e+20 1.19e+21 4.45e+20
1.19e+21 -8.90e+20 1.15e+21
4.45e+20 1.15e+21 4.35e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140102120450/index.html
|
STK = 80
DIP = 80
RAKE = 45
MW = 3.45
HS = 10.0
The NDK file is 20140102120450.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2014/01/02 12:04:50:0 39.06 -118.11 6.4 3.9 Nevada
Stations used:
BK.CMB CI.CWC CI.GRA CI.MLAC CI.MPM CI.SHO CI.SLA CI.TIN
CI.TUQ IM.NV31 LB.DAC NN.BEK NN.OMMB NN.PNT NN.RUB NN.RYN
NN.SHP NN.VCN NN.WAK NN.YER TA.O03E TA.R11A US.DUG US.ELK
US.TPNV US.WVOR UU.PSUT
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.88e+21 dyne-cm
Mw = 3.45
Z = 10 km
Plane Strike Dip Rake
NP1 80 80 45
NP2 340 46 166
Principal Axes:
Axis Value Plunge Azimuth
T 1.88e+21 38 311
N 0.00e+00 44 90
P -1.88e+21 22 203
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.90e+20
Mxy -1.15e+21
Mxz 1.19e+21
Myy 4.35e+20
Myz -4.45e+20
Mzz 4.56e+20
#-------------
##########------------
################------------
###################-----------
#######################-----------
####### ###############-----------
######## T ################-----------
######### #################-----------
##############################----------
################################--------##
################################---#######
#############################----#########
####################-------------#########
--------------------------------########
--------------------------------########
-------------------------------#######
------------------------------######
----------------------------######
------- ----------------####
------ P ---------------####
--- --------------##
--------------
Global CMT Convention Moment Tensor:
R T P
4.56e+20 1.19e+21 4.45e+20
1.19e+21 -8.90e+20 1.15e+21
4.45e+20 1.15e+21 4.35e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140102120450/index.html
|
REVIEWED BY NSL STAFF
Event ID:432876
Origin ID:1074894
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2014/01/02 (002) 12:04:52.00 39.0570 -118.1082 1074894
Depth = 8.0 (km)
Mw = 3.44
Mo = 1.78x10^21 (dyne x cm)
Percent Double Couple = 99 %
Percent CLVD = 1 %
no ISO calculated
Epsilon=-0.00
Percent Variance Reduction = 58.44 %
Total Fit = 31.02
Major Double Couple
strike dip rake
Nodal Plane 1: 346 43 -173
Nodal Plane 2: 251 85 -47
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= -0.23 Mtt= -0.55 Mff= 0.77
Mrt= 1.25 Mrf= 0.33 Mtf= 1.02 EXP=21
Moment Tensor Elements: Cartesian Coordinates
-0.55 -1.02 1.25
-1.02 0.77 -0.33
1.25 -0.33 -0.23
Eigenvalues:
T-axis eigenvalue= 1.79
N-axis eigenvalue= -0.01
P-axis eigenvalue= -1.78
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 1.79 trend=308 plunge=27
N-axis ev= 0.00 trend=66 plunge=43
P-axis ev=-1.79 trend=197 plunge=35
Maximum Azmuithal Gap=240 Distance to Nearest Station= 59.3 (km)
Number of Stations (D=Displacement/V=Velocity) Used=9 (defining only)
RYN.NN.D NV31.IM.D YER.NN.D PNT.NN.D
WAK.NN.D PAH.NN.D VCN.NN.D RUB.NN.D
OMMB.NN.D
#######----------
###############----------
###################----------
#######################----------
#######################----------
T ########################----------
-# #########################-----------
###############################----------
#################################--########
###########################################
#############################----###########
#######################----------###########
##################----------------##########
#############---------------------##########
########--------------------------#########
####------------------------------#########
--------------------------------#########
-------------------------------#########
------------------------------#########
----------------------------########
--------- --------------#######
------- P ------------#######
----- -----------######
-------------#####
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
RYN.NN (D) Y 59.3 217 37 0.020 0.080 RYN.NN.wus.glib
NV31.IM (D) Y 69.8 184 4 0.020 0.080 NV31.IM.wus.glib
YER.NN (D) Y 98.0 266 85 0.020 0.080 YER.NN.wus.glib
PNT.NN (D) Y 128.7 272 91 0.020 0.080 PNT.NN.wus.glib
WAK.NN (D) Y 130.9 242 61 0.020 0.080 WAK.NN.wus.glib
PAH.NN (D) Y 131.8 304 123 0.020 0.080 PAH.NN.wus.glib
VCN.NN (D) Y 135.5 282 101 0.020 0.080 VCN.NN.wus.glib
RUB.NN (D) Y 176.2 270 89 0.020 0.080 RUB.NN.wus.glib
OMMB.NN (D) Y 178.6 206 26 0.020 0.080 OMMB.NN.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2014/01/02 13:23:51
mtinv Version 2.1_DEVEL OCT2008
|
|
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 250 70 15 3.09 0.2530
WVFGRD96 1.0 65 90 5 3.12 0.2705
WVFGRD96 2.0 70 80 10 3.20 0.3360
WVFGRD96 3.0 250 90 -20 3.25 0.3509
WVFGRD96 4.0 250 85 -45 3.33 0.3729
WVFGRD96 5.0 250 85 -45 3.35 0.3953
WVFGRD96 6.0 250 85 -40 3.36 0.4139
WVFGRD96 7.0 250 85 -40 3.38 0.4271
WVFGRD96 8.0 75 85 45 3.43 0.4377
WVFGRD96 9.0 75 85 45 3.44 0.4444
WVFGRD96 10.0 80 80 45 3.45 0.4480
WVFGRD96 11.0 75 85 40 3.45 0.4472
WVFGRD96 12.0 80 80 40 3.45 0.4460
WVFGRD96 13.0 80 80 40 3.46 0.4407
WVFGRD96 14.0 75 85 35 3.47 0.4364
WVFGRD96 15.0 75 85 35 3.48 0.4310
WVFGRD96 16.0 75 85 35 3.48 0.4243
WVFGRD96 17.0 255 90 -35 3.48 0.4167
WVFGRD96 18.0 255 90 -35 3.49 0.4099
WVFGRD96 19.0 255 90 -35 3.49 0.4028
WVFGRD96 20.0 255 90 -30 3.50 0.3956
WVFGRD96 21.0 255 90 -35 3.51 0.3879
WVFGRD96 22.0 255 90 -35 3.51 0.3800
WVFGRD96 23.0 255 90 -30 3.52 0.3721
WVFGRD96 24.0 255 90 -30 3.52 0.3645
WVFGRD96 25.0 255 90 -30 3.52 0.3569
WVFGRD96 26.0 250 85 -30 3.54 0.3493
WVFGRD96 27.0 250 85 -30 3.55 0.3417
WVFGRD96 28.0 250 80 -30 3.55 0.3337
WVFGRD96 29.0 250 80 -30 3.55 0.3262
The best solution is
WVFGRD96 10.0 80 80 45 3.45 0.4480
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00