The ANSS event ID is ak013ggen0ok and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak013ggen0ok/executive.
2013/12/24 20:56:47 60.257 -141.671 10.8 3.9 Alaska
USGS/SLU Moment Tensor Solution
ENS 2013/12/24 20:56:47:0 60.26 -141.67 10.8 3.9 Alaska
Stations used:
AK.BAL AK.BARN AK.BGLC AK.BRLK AK.CCB AK.CRQ AK.CTG AK.DHY
AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.GOAT AK.GRIN
AK.GRNC AK.HIN AK.KHIT AK.KIAG AK.KTH AK.MCAR AK.PAX AK.PPD
AK.PTPK AK.PWL AK.RIDG AK.RKAV AK.RND AK.SAMH AK.SCM
AK.SCRK AK.SGA AK.SKN AK.SSP AK.SWD AK.TGL AK.VRDI AK.WAT6
AK.WAX AT.MENT AT.PMR IM.IL31 IU.COLA TA.HDA TA.POKR
US.EGAK
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.40e+22 dyne-cm
Mw = 4.03
Z = 11 km
Plane Strike Dip Rake
NP1 103 71 107
NP2 240 25 50
Principal Axes:
Axis Value Plunge Azimuth
T 1.40e+22 60 37
N 0.00e+00 16 277
P -1.40e+22 24 180
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.43e+21
Mxy 1.65e+21
Mxz 1.00e+22
Myy 1.24e+21
Myz 3.61e+21
Mzz 8.19e+21
--------------
----------------------
-----------############-----
-------######################-
-------##########################-
------##############################
-----################# #############
-----################## T ##############
---#################### ##############
###-######################################
###--#####################################
###------#################################
##-----------#############################
#------------------#####################
#---------------------------------------
#-------------------------------------
------------------------------------
----------------------------------
-------------- -------------
------------- P ------------
---------- ---------
--------------
Global CMT Convention Moment Tensor:
R T P
8.19e+21 1.00e+22 -3.61e+21
1.00e+22 -9.43e+21 -1.65e+21
-3.61e+21 -1.65e+21 1.24e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131224205647/index.html
|
STK = 240
DIP = 25
RAKE = 50
MW = 4.03
HS = 11.0
The NDK file is 20131224205647.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2013/12/24 20:56:47:0 60.26 -141.67 10.8 3.9 Alaska
Stations used:
AK.BAL AK.BARN AK.BGLC AK.BRLK AK.CCB AK.CRQ AK.CTG AK.DHY
AK.DOT AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.GOAT AK.GRIN
AK.GRNC AK.HIN AK.KHIT AK.KIAG AK.KTH AK.MCAR AK.PAX AK.PPD
AK.PTPK AK.PWL AK.RIDG AK.RKAV AK.RND AK.SAMH AK.SCM
AK.SCRK AK.SGA AK.SKN AK.SSP AK.SWD AK.TGL AK.VRDI AK.WAT6
AK.WAX AT.MENT AT.PMR IM.IL31 IU.COLA TA.HDA TA.POKR
US.EGAK
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.40e+22 dyne-cm
Mw = 4.03
Z = 11 km
Plane Strike Dip Rake
NP1 103 71 107
NP2 240 25 50
Principal Axes:
Axis Value Plunge Azimuth
T 1.40e+22 60 37
N 0.00e+00 16 277
P -1.40e+22 24 180
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.43e+21
Mxy 1.65e+21
Mxz 1.00e+22
Myy 1.24e+21
Myz 3.61e+21
Mzz 8.19e+21
--------------
----------------------
-----------############-----
-------######################-
-------##########################-
------##############################
-----################# #############
-----################## T ##############
---#################### ##############
###-######################################
###--#####################################
###------#################################
##-----------#############################
#------------------#####################
#---------------------------------------
#-------------------------------------
------------------------------------
----------------------------------
-------------- -------------
------------- P ------------
---------- ---------
--------------
Global CMT Convention Moment Tensor:
R T P
8.19e+21 1.00e+22 -3.61e+21
1.00e+22 -9.43e+21 -1.65e+21
-3.61e+21 -1.65e+21 1.24e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131224205647/index.html
|
Moment
1.13e+15 N-m
Magnitude
4.0
Percent DC
94%
Depth
10.0 km
Updated
2013-12-24 21:29:47 UTC
Author
us
Catalog
ak
Contributor
us
Code
us_c000lr2t_mwr
Principal Axes
Axis Value Plunge Azimuth
T 1.112 64 12
N 0.032 5 273
P -1.144 25 180
Nodal Planes
Plane Strike Dip Rake
NP1 94 70 95
NP2 260 20 77
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 255 45 90 3.64 0.3073
WVFGRD96 1.0 75 45 95 3.66 0.2750
WVFGRD96 2.0 260 45 100 3.76 0.3165
WVFGRD96 3.0 220 80 50 3.80 0.2834
WVFGRD96 4.0 220 10 35 3.93 0.3526
WVFGRD96 5.0 220 15 25 3.94 0.4147
WVFGRD96 6.0 230 15 40 3.94 0.4610
WVFGRD96 7.0 230 20 40 3.94 0.4989
WVFGRD96 8.0 235 20 45 4.01 0.5183
WVFGRD96 9.0 240 20 50 4.02 0.5416
WVFGRD96 10.0 240 25 55 4.02 0.5571
WVFGRD96 11.0 240 25 50 4.03 0.5644
WVFGRD96 12.0 235 30 50 4.03 0.5642
WVFGRD96 13.0 240 30 50 4.03 0.5593
WVFGRD96 14.0 235 30 45 4.03 0.5503
WVFGRD96 15.0 235 30 45 4.03 0.5378
WVFGRD96 16.0 235 30 45 4.03 0.5228
WVFGRD96 17.0 235 30 40 4.03 0.5067
WVFGRD96 18.0 235 30 40 4.03 0.4902
WVFGRD96 19.0 230 35 35 4.03 0.4730
WVFGRD96 20.0 230 35 35 4.03 0.4563
WVFGRD96 21.0 240 30 40 4.04 0.4408
WVFGRD96 22.0 230 35 30 4.04 0.4246
WVFGRD96 23.0 230 35 30 4.04 0.4081
WVFGRD96 24.0 230 35 25 4.04 0.3936
WVFGRD96 25.0 230 35 25 4.05 0.3793
WVFGRD96 26.0 200 45 -25 4.03 0.3673
WVFGRD96 27.0 205 50 -20 4.03 0.3556
WVFGRD96 28.0 205 50 -20 4.04 0.3442
WVFGRD96 29.0 205 50 -20 4.04 0.3328
The best solution is
WVFGRD96 11.0 240 25 50 4.03 0.5644
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00