The ANSS event ID is usb000ksnp and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usb000ksnp/executive.
2013/11/05 04:01:35 35.604 -97.371 5.0 3.8 Oklahoma
USGS/SLU Moment Tensor Solution ENS 2013/11/05 04:01:35:0 35.60 -97.37 5.0 3.8 Oklahoma Stations used: AG.CCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR IU.CCM NM.GNAR NM.LPAR NM.MGMO NM.PBMO NM.UALR OK.U32A TA.435B TA.ABTX TA.BGNE TA.KSCO TA.MSTX TA.T25A TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.X43A US.AMTX US.CBKS US.JCT US.KSU1 US.MIAR US.WMOK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 4.03e+21 dyne-cm Mw = 3.67 Z = 4 km Plane Strike Dip Rake NP1 25 90 -170 NP2 295 80 0 Principal Axes: Axis Value Plunge Azimuth T 4.03e+21 7 160 N 0.00e+00 80 25 P -4.03e+21 7 250 Moment Tensor: (dyne-cm) Component Value Mxx 3.04e+21 Mxy -2.55e+21 Mxz -2.96e+20 Myy -3.04e+21 Myz 6.34e+20 Mzz 0.00e+00 ############## ###################--- #####################------- #####################--------- #######################----------- #######################------------- ---####################--------------- -----------############----------------- ----------------######------------------ ---------------------#-------------------- ---------------------####----------------- ---------------------#######-------------- --------------------############---------- ---------------################------ P --------------###################---- -------------######################- -------------####################### -----------####################### ---------##################### -------############ ###### ---############# T ### ############ Global CMT Convention Moment Tensor: R T P 0.00e+00 -2.96e+20 -6.34e+20 -2.96e+20 3.04e+21 2.55e+21 -6.34e+20 2.55e+21 -3.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131105040135/index.html |
STK = 295 DIP = 80 RAKE = 0 MW = 3.67 HS = 4.0
The NDK file is 20131105040135.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/11/05 04:01:35:0 35.60 -97.37 5.0 3.8 Oklahoma Stations used: AG.CCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR IU.CCM NM.GNAR NM.LPAR NM.MGMO NM.PBMO NM.UALR OK.U32A TA.435B TA.ABTX TA.BGNE TA.KSCO TA.MSTX TA.T25A TA.TUL1 TA.U40A TA.W39A TA.W41B TA.WHTX TA.X40A TA.X43A US.AMTX US.CBKS US.JCT US.KSU1 US.MIAR US.WMOK Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 4.03e+21 dyne-cm Mw = 3.67 Z = 4 km Plane Strike Dip Rake NP1 25 90 -170 NP2 295 80 0 Principal Axes: Axis Value Plunge Azimuth T 4.03e+21 7 160 N 0.00e+00 80 25 P -4.03e+21 7 250 Moment Tensor: (dyne-cm) Component Value Mxx 3.04e+21 Mxy -2.55e+21 Mxz -2.96e+20 Myy -3.04e+21 Myz 6.34e+20 Mzz 0.00e+00 ############## ###################--- #####################------- #####################--------- #######################----------- #######################------------- ---####################--------------- -----------############----------------- ----------------######------------------ ---------------------#-------------------- ---------------------####----------------- ---------------------#######-------------- --------------------############---------- ---------------################------ P --------------###################---- -------------######################- -------------####################### -----------####################### ---------##################### -------############ ###### ---############# T ### ############ Global CMT Convention Moment Tensor: R T P 0.00e+00 -2.96e+20 -6.34e+20 -2.96e+20 3.04e+21 2.55e+21 -6.34e+20 2.55e+21 -3.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131105040135/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 6.27e+14 N-m Magnitude 3.8 Percent DC 94% Depth 7.0 km Updated 2013-11-05 04:45:24 UTC Author us Catalog us Contributor us Code us_b000ksnp_mwr Principal Axes Axis Value Plunge Azimuth T 6.358 12 166 N -0.172 66 47 P -6.186 20 260 Nodal Planes Plane Strike Dip Rake NP1 34° 84 -157 NP2 302° 67 -6 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 290 70 -20 3.53 0.4607 WVFGRD96 1.0 295 90 0 3.52 0.4909 WVFGRD96 2.0 290 70 -20 3.64 0.5788 WVFGRD96 3.0 295 90 0 3.64 0.6012 WVFGRD96 4.0 295 80 0 3.67 0.6052 WVFGRD96 5.0 295 70 0 3.70 0.6027 WVFGRD96 6.0 295 70 -5 3.72 0.5982 WVFGRD96 7.0 295 70 -5 3.73 0.5932 WVFGRD96 8.0 110 70 -25 3.76 0.5866 WVFGRD96 9.0 110 70 -25 3.77 0.5824 WVFGRD96 10.0 110 70 -25 3.78 0.5781 WVFGRD96 11.0 115 75 -20 3.79 0.5725 WVFGRD96 12.0 115 75 -20 3.80 0.5674 WVFGRD96 13.0 115 75 -20 3.81 0.5600 WVFGRD96 14.0 115 75 -20 3.82 0.5524 WVFGRD96 15.0 115 80 -20 3.83 0.5440 WVFGRD96 16.0 115 80 -20 3.84 0.5342 WVFGRD96 17.0 115 80 -20 3.85 0.5227 WVFGRD96 18.0 115 80 -15 3.86 0.5102 WVFGRD96 19.0 115 80 -15 3.87 0.4962 WVFGRD96 20.0 115 80 -15 3.87 0.4809 WVFGRD96 21.0 115 80 -20 3.88 0.4646 WVFGRD96 22.0 115 80 -20 3.89 0.4472 WVFGRD96 23.0 115 80 -20 3.89 0.4294 WVFGRD96 24.0 115 80 -20 3.90 0.4106 WVFGRD96 25.0 115 80 -25 3.90 0.3915 WVFGRD96 26.0 115 80 -25 3.90 0.3727 WVFGRD96 27.0 115 80 -30 3.91 0.3536 WVFGRD96 28.0 115 80 -30 3.91 0.3353 WVFGRD96 29.0 110 80 -35 3.91 0.3192
The best solution is
WVFGRD96 4.0 295 80 0 3.67 0.6052
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00