The ANSS event ID is ak013ctmxi36 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak013ctmxi36/executive.
2013/10/06 13:42:17 62.912 -150.573 104.7 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/10/06 13:42:17:0 62.91 -150.57 104.7 4.0 Alaska Stations used: AK.BPAW AK.BWN AK.CCB AK.DHY AK.KTH AK.MCK AK.MLY AK.PPLA AK.RND AK.SKN AK.SSN AK.TRF AK.WAT1 AK.WAT2 AK.WAT3 AK.WAT4 AK.WAT5 AK.WAT6 AK.WAT7 AK.WRH IM.IL31 IU.COLA TA.HDA TA.POKR TA.TCOL YE.PIC1 YE.PIC4 Filtering commands used: cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 108 km Plane Strike Dip Rake NP1 295 60 65 NP2 158 38 126 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 65 159 N 0.00e+00 21 308 P -1.60e+22 12 43 Moment Tensor: (dyne-cm) Component Value Mxx -5.84e+21 Mxy -8.59e+21 Mxz -8.02e+21 Myy -6.74e+21 Myz -2.39e+14 Mzz 1.26e+22 -------------- ##-------------------- ###---------------------- ###----------------------- P - #####----------------------- --- #########--------------------------- ------#############------------------- ------##################---------------- ------#####################------------- -------########################----------- --------#########################--------- --------###########################------- --------#############################----- --------############# #############--- ---------############ T ##############-- ---------########### ############### ---------########################### ----------######################## ---------##################### -----------################# -----------########### -------------- Global CMT Convention Moment Tensor: R T P 1.26e+22 -8.02e+21 2.39e+14 -8.02e+21 -5.84e+21 8.59e+21 2.39e+14 8.59e+21 -6.74e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131006134217/index.html |
STK = 295 DIP = 60 RAKE = 65 MW = 4.07 HS = 108.0
The NDK file is 20131006134217.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 340 45 -80 3.11 0.1944 WVFGRD96 2.0 330 45 -95 3.26 0.2539 WVFGRD96 3.0 345 40 -75 3.30 0.2036 WVFGRD96 4.0 210 65 30 3.29 0.1968 WVFGRD96 5.0 210 65 35 3.31 0.2177 WVFGRD96 6.0 205 70 35 3.32 0.2344 WVFGRD96 7.0 205 70 40 3.34 0.2518 WVFGRD96 8.0 210 65 45 3.41 0.2555 WVFGRD96 9.0 205 70 45 3.42 0.2677 WVFGRD96 10.0 210 65 50 3.44 0.2764 WVFGRD96 11.0 205 65 50 3.45 0.2823 WVFGRD96 12.0 205 65 50 3.47 0.2854 WVFGRD96 13.0 210 65 55 3.48 0.2864 WVFGRD96 14.0 210 65 55 3.50 0.2857 WVFGRD96 15.0 295 50 35 3.51 0.2857 WVFGRD96 16.0 295 50 35 3.52 0.2866 WVFGRD96 17.0 295 50 40 3.53 0.2871 WVFGRD96 18.0 295 50 40 3.54 0.2863 WVFGRD96 19.0 295 50 35 3.56 0.2845 WVFGRD96 20.0 295 50 40 3.56 0.2821 WVFGRD96 21.0 295 50 40 3.58 0.2785 WVFGRD96 22.0 295 50 35 3.59 0.2753 WVFGRD96 23.0 285 45 25 3.59 0.2717 WVFGRD96 24.0 295 60 35 3.62 0.2684 WVFGRD96 25.0 295 60 40 3.62 0.2661 WVFGRD96 26.0 295 60 40 3.62 0.2624 WVFGRD96 27.0 295 65 40 3.64 0.2608 WVFGRD96 28.0 295 65 40 3.64 0.2602 WVFGRD96 29.0 295 65 40 3.65 0.2594 WVFGRD96 30.0 295 65 40 3.66 0.2593 WVFGRD96 31.0 295 65 40 3.67 0.2586 WVFGRD96 32.0 295 55 30 3.68 0.2642 WVFGRD96 33.0 295 55 30 3.69 0.2706 WVFGRD96 34.0 295 60 30 3.70 0.2767 WVFGRD96 35.0 295 55 35 3.70 0.2819 WVFGRD96 36.0 295 55 35 3.71 0.2856 WVFGRD96 37.0 295 55 35 3.72 0.2880 WVFGRD96 38.0 55 50 -85 3.75 0.2891 WVFGRD96 39.0 55 50 -85 3.77 0.2925 WVFGRD96 40.0 60 50 -85 3.87 0.3008 WVFGRD96 41.0 60 50 -85 3.89 0.3024 WVFGRD96 42.0 60 50 -85 3.90 0.3022 WVFGRD96 43.0 305 45 60 3.86 0.3006 WVFGRD96 44.0 60 50 -85 3.92 0.2984 WVFGRD96 45.0 305 45 55 3.87 0.2976 WVFGRD96 46.0 305 45 55 3.88 0.2986 WVFGRD96 47.0 305 45 55 3.88 0.2979 WVFGRD96 48.0 95 55 -40 3.94 0.3027 WVFGRD96 49.0 95 55 -40 3.95 0.3068 WVFGRD96 50.0 95 55 -40 3.96 0.3108 WVFGRD96 51.0 110 85 -40 3.94 0.3163 WVFGRD96 52.0 110 85 -40 3.94 0.3235 WVFGRD96 53.0 110 85 -40 3.95 0.3310 WVFGRD96 54.0 110 85 -45 3.96 0.3375 WVFGRD96 55.0 305 60 65 3.92 0.3450 WVFGRD96 56.0 305 60 65 3.93 0.3561 WVFGRD96 57.0 305 60 65 3.94 0.3679 WVFGRD96 58.0 305 60 65 3.94 0.3785 WVFGRD96 59.0 305 60 65 3.95 0.3895 WVFGRD96 60.0 305 60 65 3.95 0.4010 WVFGRD96 61.0 305 60 65 3.96 0.4106 WVFGRD96 62.0 305 60 65 3.96 0.4222 WVFGRD96 63.0 305 60 65 3.97 0.4322 WVFGRD96 64.0 305 65 65 3.97 0.4426 WVFGRD96 65.0 305 65 65 3.98 0.4533 WVFGRD96 66.0 305 65 65 3.98 0.4636 WVFGRD96 67.0 300 65 65 3.99 0.4741 WVFGRD96 68.0 300 65 65 3.99 0.4838 WVFGRD96 69.0 300 65 65 4.00 0.4934 WVFGRD96 70.0 300 65 65 4.00 0.5031 WVFGRD96 71.0 300 65 65 4.00 0.5116 WVFGRD96 72.0 300 65 65 4.01 0.5210 WVFGRD96 73.0 300 65 65 4.01 0.5278 WVFGRD96 74.0 300 65 65 4.01 0.5368 WVFGRD96 75.0 300 65 65 4.02 0.5430 WVFGRD96 76.0 300 65 65 4.02 0.5510 WVFGRD96 77.0 300 65 65 4.02 0.5565 WVFGRD96 78.0 300 65 65 4.02 0.5628 WVFGRD96 79.0 300 65 65 4.03 0.5680 WVFGRD96 80.0 300 65 65 4.03 0.5733 WVFGRD96 81.0 300 65 65 4.03 0.5790 WVFGRD96 82.0 300 65 65 4.03 0.5817 WVFGRD96 83.0 300 65 65 4.03 0.5871 WVFGRD96 84.0 300 65 65 4.04 0.5897 WVFGRD96 85.0 300 65 65 4.04 0.5949 WVFGRD96 86.0 300 60 65 4.03 0.5972 WVFGRD96 87.0 300 60 65 4.04 0.6029 WVFGRD96 88.0 300 60 65 4.04 0.6061 WVFGRD96 89.0 300 60 65 4.04 0.6100 WVFGRD96 90.0 300 60 65 4.04 0.6142 WVFGRD96 91.0 300 60 65 4.04 0.6163 WVFGRD96 92.0 300 60 65 4.04 0.6206 WVFGRD96 93.0 300 60 65 4.05 0.6221 WVFGRD96 94.0 300 60 65 4.05 0.6252 WVFGRD96 95.0 300 60 65 4.05 0.6278 WVFGRD96 96.0 300 60 65 4.05 0.6294 WVFGRD96 97.0 300 60 65 4.05 0.6320 WVFGRD96 98.0 300 60 65 4.05 0.6337 WVFGRD96 99.0 300 60 65 4.05 0.6348 WVFGRD96 100.0 300 60 65 4.06 0.6369 WVFGRD96 101.0 300 60 65 4.06 0.6376 WVFGRD96 102.0 300 60 65 4.06 0.6379 WVFGRD96 103.0 300 60 65 4.06 0.6407 WVFGRD96 104.0 300 60 65 4.06 0.6391 WVFGRD96 105.0 300 60 65 4.06 0.6415 WVFGRD96 106.0 295 60 65 4.07 0.6422 WVFGRD96 107.0 295 60 65 4.07 0.6414 WVFGRD96 108.0 295 60 65 4.07 0.6433 WVFGRD96 109.0 295 60 65 4.07 0.6424 WVFGRD96 110.0 295 60 65 4.08 0.6428 WVFGRD96 111.0 295 60 65 4.08 0.6422 WVFGRD96 112.0 295 60 65 4.08 0.6428 WVFGRD96 113.0 295 60 65 4.08 0.6408 WVFGRD96 114.0 295 60 65 4.08 0.6419 WVFGRD96 115.0 295 60 65 4.08 0.6404 WVFGRD96 116.0 295 60 65 4.08 0.6388 WVFGRD96 117.0 295 60 65 4.08 0.6389 WVFGRD96 118.0 295 60 65 4.09 0.6374 WVFGRD96 119.0 295 60 65 4.09 0.6356 WVFGRD96 120.0 295 60 65 4.09 0.6347 WVFGRD96 121.0 295 60 65 4.09 0.6334 WVFGRD96 122.0 295 60 65 4.09 0.6313 WVFGRD96 123.0 295 60 65 4.09 0.6296 WVFGRD96 124.0 295 60 65 4.09 0.6282 WVFGRD96 125.0 295 60 65 4.09 0.6268 WVFGRD96 126.0 295 60 65 4.10 0.6229 WVFGRD96 127.0 295 60 65 4.10 0.6226 WVFGRD96 128.0 295 60 65 4.10 0.6208 WVFGRD96 129.0 295 60 65 4.10 0.6165
The best solution is
WVFGRD96 108.0 295 60 65 4.07 0.6433
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00