The ANSS event ID is usb000jx4l and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usb000jx4l/executive.
2013/09/21 13:16:31 42.974 -109.128 76.2 4.8 Wyoming
USGS/SLU Moment Tensor Solution ENS 2013/09/21 13:16:31:0 42.97 -109.13 76.2 4.8 Wyoming Stations used: IU.RSSD IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RWWY IW.SNOW IW.TPAW TA.H17A TA.Q24A US.AHID US.BOZ US.LKWY US.MSO US.RLMT WY.YHB WY.YHH WY.YHL WY.YMP WY.YNE WY.YNR WY.YTP Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.80e+23 dyne-cm Mw = 4.77 Z = 76 km Plane Strike Dip Rake NP1 65 65 30 NP2 321 63 152 Principal Axes: Axis Value Plunge Azimuth T 1.80e+23 38 284 N 0.00e+00 52 101 P -1.80e+23 1 193 Moment Tensor: (dyne-cm) Component Value Mxx -1.65e+23 Mxy -6.44e+22 Mxz 2.46e+22 Myy 9.59e+22 Myz -8.41e+22 Mzz 6.89e+22 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- ##################------------------ #####################----------------- #######################---------------## ###### ################-----------#### ####### T #################---------###### ####### ###################-----######## ##############################--########## #############################--########### #########################------######### #####################-----------######## ###############----------------####### -------------------------------##### ------------------------------#### ----------------------------## ---------------------------# ----- -------------- - P ---------- Global CMT Convention Moment Tensor: R T P 6.89e+22 2.46e+22 8.41e+22 2.46e+22 -1.65e+23 6.44e+22 8.41e+22 6.44e+22 9.59e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130921131631/index.html |
STK = 65 DIP = 65 RAKE = 30 MW = 4.77 HS = 76.0
The NDK file is 20130921131631.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/09/21 13:16:31:0 42.97 -109.13 76.2 4.8 Wyoming Stations used: IU.RSSD IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RWWY IW.SNOW IW.TPAW TA.H17A TA.Q24A US.AHID US.BOZ US.LKWY US.MSO US.RLMT WY.YHB WY.YHH WY.YHL WY.YMP WY.YNE WY.YNR WY.YTP Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.80e+23 dyne-cm Mw = 4.77 Z = 76 km Plane Strike Dip Rake NP1 65 65 30 NP2 321 63 152 Principal Axes: Axis Value Plunge Azimuth T 1.80e+23 38 284 N 0.00e+00 52 101 P -1.80e+23 1 193 Moment Tensor: (dyne-cm) Component Value Mxx -1.65e+23 Mxy -6.44e+22 Mxz 2.46e+22 Myy 9.59e+22 Myz -8.41e+22 Mzz 6.89e+22 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- ##################------------------ #####################----------------- #######################---------------## ###### ################-----------#### ####### T #################---------###### ####### ###################-----######## ##############################--########## #############################--########### #########################------######### #####################-----------######## ###############----------------####### -------------------------------##### ------------------------------#### ----------------------------## ---------------------------# ----- -------------- - P ---------- Global CMT Convention Moment Tensor: R T P 6.89e+22 2.46e+22 8.41e+22 2.46e+22 -1.65e+23 6.44e+22 8.41e+22 6.44e+22 9.59e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130921131631/index.html |
Regional Moment Tensor (Mwr) Moment 2.71e+16 N-m Magnitude 4.9 Percent DC 45% Depth 78.0 km Updated 2013-09-21 15:44:17 UTC Author us Catalog us Contributor us Code us_b000jx4l_mwr Principal Axes Axis Value Plunge Azimuth T 2.331 52 296 N 0.641 38 103 P -2.971 6 198 Nodal Planes Plane Strike Dip Rake NP1 78° 61 46 NP2 322° 51 142 |
September 21, 2013, WYOMING, MW=4.8 Meredith Nettles Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: S201309211316A DATA: IU II LD DK G TA US BK CI SURFACE WAVES: 101S, 160C, T= 50 TIMESTAMP: Q-20130921162219 CENTROID LOCATION: ORIGIN TIME: 13:16:35.5 0.2 LAT:42.99N 0.02;LON:109.12W 0.02 DEP: 82.0 3.6;TRIANG HDUR: 0.6 MOMENT TENSOR: SCALE 10**23 D-CM RR= 0.445 0.072; TT=-2.090 0.070 PP= 1.640 0.069; RT= 0.247 0.043 RP= 0.786 0.031; TP= 0.631 0.073 PRINCIPAL AXES: 1.(T) VAL= 2.138;PLG=26;AZM=280 2.(N) 0.057; 64; 93 3.(P) -2.199; 3; 189 BEST DBLE.COUPLE:M0= 2.17*10**23 NP1: STRIKE=321;DIP=70;SLIP= 163 NP2: STRIKE= 57;DIP=74;SLIP= 21 ----------- ------------------- ####------------------- #########------------------ ############----------------# ###############-------------### ## ############---------##### ### T #############------######## ### ###############--########## #####################-########### ##################-----########## ##############---------######## ##########--------------####### ####--------------------##### -----------------------#### ----------------------# ------ ---------- -- P ------ |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 330 60 30 3.69 0.1911 WVFGRD96 1.0 330 60 20 3.72 0.2050 WVFGRD96 2.0 330 60 25 3.83 0.2624 WVFGRD96 3.0 330 65 20 3.87 0.2761 WVFGRD96 4.0 335 70 40 3.93 0.2853 WVFGRD96 5.0 140 65 -15 3.93 0.2991 WVFGRD96 6.0 140 70 -20 3.95 0.3175 WVFGRD96 7.0 140 70 -15 3.98 0.3333 WVFGRD96 8.0 310 60 -40 4.06 0.3536 WVFGRD96 9.0 310 60 -45 4.10 0.3674 WVFGRD96 10.0 310 60 -45 4.11 0.3800 WVFGRD96 11.0 310 60 -45 4.13 0.3883 WVFGRD96 12.0 310 65 -45 4.15 0.3953 WVFGRD96 13.0 310 65 -45 4.16 0.3988 WVFGRD96 14.0 310 65 -45 4.17 0.4003 WVFGRD96 15.0 310 65 -45 4.19 0.4005 WVFGRD96 16.0 310 65 -45 4.20 0.3963 WVFGRD96 17.0 310 65 -45 4.21 0.3913 WVFGRD96 18.0 310 65 -45 4.22 0.3832 WVFGRD96 19.0 315 70 -50 4.24 0.3767 WVFGRD96 20.0 180 5 -45 4.31 0.3748 WVFGRD96 21.0 180 5 -45 4.33 0.3719 WVFGRD96 22.0 170 5 -55 4.34 0.3750 WVFGRD96 23.0 190 10 -35 4.35 0.3705 WVFGRD96 24.0 185 10 -40 4.36 0.3729 WVFGRD96 25.0 190 10 -35 4.37 0.3742 WVFGRD96 26.0 180 10 -45 4.38 0.3682 WVFGRD96 27.0 180 10 -45 4.39 0.3677 WVFGRD96 28.0 180 10 -45 4.40 0.3647 WVFGRD96 29.0 175 10 -50 4.41 0.3568 WVFGRD96 30.0 175 10 -50 4.42 0.3530 WVFGRD96 31.0 175 10 -50 4.43 0.3450 WVFGRD96 32.0 175 10 -50 4.43 0.3388 WVFGRD96 33.0 175 10 -50 4.44 0.3326 WVFGRD96 34.0 165 10 -55 4.45 0.3212 WVFGRD96 35.0 170 10 -50 4.46 0.3131 WVFGRD96 36.0 175 10 -50 4.44 0.3057 WVFGRD96 37.0 40 40 -15 4.39 0.2968 WVFGRD96 38.0 45 45 -15 4.39 0.2998 WVFGRD96 39.0 60 45 35 4.42 0.3109 WVFGRD96 40.0 70 40 45 4.54 0.3352 WVFGRD96 41.0 65 45 40 4.55 0.3456 WVFGRD96 42.0 70 40 40 4.58 0.3574 WVFGRD96 43.0 60 45 20 4.57 0.3715 WVFGRD96 44.0 60 45 20 4.59 0.3886 WVFGRD96 45.0 60 50 20 4.59 0.4049 WVFGRD96 46.0 60 50 20 4.61 0.4204 WVFGRD96 47.0 60 50 20 4.62 0.4352 WVFGRD96 48.0 65 50 25 4.64 0.4490 WVFGRD96 49.0 65 50 25 4.65 0.4623 WVFGRD96 50.0 65 50 25 4.66 0.4746 WVFGRD96 51.0 65 50 25 4.67 0.4860 WVFGRD96 52.0 65 50 30 4.69 0.4971 WVFGRD96 53.0 65 50 30 4.70 0.5083 WVFGRD96 54.0 60 55 20 4.68 0.5202 WVFGRD96 55.0 60 55 20 4.69 0.5331 WVFGRD96 56.0 60 55 20 4.70 0.5453 WVFGRD96 57.0 60 55 20 4.71 0.5567 WVFGRD96 58.0 60 60 20 4.70 0.5675 WVFGRD96 59.0 60 60 20 4.71 0.5771 WVFGRD96 60.0 60 60 20 4.72 0.5866 WVFGRD96 61.0 60 60 20 4.72 0.5952 WVFGRD96 62.0 60 60 20 4.73 0.6027 WVFGRD96 63.0 60 60 20 4.73 0.6098 WVFGRD96 64.0 60 65 25 4.73 0.6161 WVFGRD96 65.0 60 65 25 4.73 0.6218 WVFGRD96 66.0 65 60 25 4.75 0.6272 WVFGRD96 67.0 65 60 25 4.76 0.6318 WVFGRD96 68.0 65 60 25 4.76 0.6356 WVFGRD96 69.0 65 60 25 4.76 0.6393 WVFGRD96 70.0 65 60 25 4.77 0.6423 WVFGRD96 71.0 65 60 25 4.77 0.6442 WVFGRD96 72.0 65 65 30 4.76 0.6460 WVFGRD96 73.0 65 65 30 4.77 0.6479 WVFGRD96 74.0 65 65 30 4.77 0.6490 WVFGRD96 75.0 65 65 30 4.77 0.6503 WVFGRD96 76.0 65 65 30 4.77 0.6508 WVFGRD96 77.0 65 65 30 4.77 0.6500 WVFGRD96 78.0 65 65 30 4.78 0.6502 WVFGRD96 79.0 65 65 30 4.78 0.6497 WVFGRD96 80.0 65 65 30 4.78 0.6482 WVFGRD96 81.0 65 70 30 4.77 0.6474 WVFGRD96 82.0 65 70 30 4.77 0.6463 WVFGRD96 83.0 65 70 30 4.77 0.6453 WVFGRD96 84.0 65 70 30 4.77 0.6439 WVFGRD96 85.0 65 70 30 4.77 0.6417 WVFGRD96 86.0 65 70 30 4.77 0.6403 WVFGRD96 87.0 65 70 30 4.77 0.6383 WVFGRD96 88.0 65 70 30 4.77 0.6359 WVFGRD96 89.0 65 70 30 4.77 0.6343 WVFGRD96 90.0 65 70 30 4.77 0.6319 WVFGRD96 91.0 65 70 30 4.77 0.6294 WVFGRD96 92.0 65 70 30 4.78 0.6267 WVFGRD96 93.0 65 70 30 4.78 0.6246 WVFGRD96 94.0 65 70 30 4.78 0.6222 WVFGRD96 95.0 65 70 30 4.78 0.6193 WVFGRD96 96.0 65 70 30 4.78 0.6168 WVFGRD96 97.0 65 70 30 4.78 0.6142 WVFGRD96 98.0 65 70 30 4.78 0.6115 WVFGRD96 99.0 65 70 30 4.78 0.6089
The best solution is
WVFGRD96 76.0 65 65 30 4.77 0.6508
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00