The ANSS event ID is nn00423851 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00423851/executive.
2013/09/16 14:12:31 37.532 -115.471 0.0 3.8 Nevada
USGS/SLU Moment Tensor Solution
ENS 2013/09/16 14:12:31:0 37.53 -115.47 0.0 3.8 Nevada
Stations used:
AE.U15A AE.W13A BK.CMB CI.ADO CI.BEL CI.BFS CI.CHF CI.CWC
CI.DGR CI.EDW2 CI.FUR CI.GMR CI.GRA CI.GSC CI.HEC CI.IRM
CI.ISA CI.MLAC CI.MPM CI.NEE2 CI.SHO CI.SLA CI.TIN CI.TUQ
CI.VCS CI.VES II.PFO IM.NV31 LB.BMN NN.KVN NN.OMMB NN.PRN
NN.RYN NN.SHP NN.UNVG NN.WTNK PB.B086A TA.R11A TA.Y12C
US.TPNV UU.CCUT UU.KNB UU.LCMT UU.PKCU UU.PSUT UU.SZCU
UU.VRUT UU.ZNPU
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.02e+21 dyne-cm
Mw = 3.47
Z = 10 km
Plane Strike Dip Rake
NP1 5 90 -150
NP2 275 60 0
Principal Axes:
Axis Value Plunge Azimuth
T 2.02e+21 21 136
N 0.00e+00 60 5
P -2.02e+21 21 234
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.04e+20
Mxy -1.72e+21
Mxz -8.80e+19
Myy -3.04e+20
Myz 1.01e+21
Mzz 0.00e+00
#########-----
#############---------
###############-------------
################--------------
##################----------------
###################-----------------
####################------------------
########-------------######-------------
###-----------------############--------
#--------------------################-----
---------------------##################---
---------------------####################-
---------------------#####################
--------------------####################
-------------------#####################
---- -----------####################
--- P -----------########### #####
-- -----------########### T ####
--------------########### ##
-------------###############
---------#############
-----#########
Global CMT Convention Moment Tensor:
R T P
0.00e+00 -8.80e+19 -1.01e+21
-8.80e+19 3.04e+20 1.72e+21
-1.01e+21 1.72e+21 -3.04e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130916141231/index.html
|
STK = 275
DIP = 60
RAKE = 0
MW = 3.47
HS = 10.0
The NDK file is 20130916141231.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2013/09/16 14:12:31:0 37.53 -115.47 0.0 3.8 Nevada
Stations used:
AE.U15A AE.W13A BK.CMB CI.ADO CI.BEL CI.BFS CI.CHF CI.CWC
CI.DGR CI.EDW2 CI.FUR CI.GMR CI.GRA CI.GSC CI.HEC CI.IRM
CI.ISA CI.MLAC CI.MPM CI.NEE2 CI.SHO CI.SLA CI.TIN CI.TUQ
CI.VCS CI.VES II.PFO IM.NV31 LB.BMN NN.KVN NN.OMMB NN.PRN
NN.RYN NN.SHP NN.UNVG NN.WTNK PB.B086A TA.R11A TA.Y12C
US.TPNV UU.CCUT UU.KNB UU.LCMT UU.PKCU UU.PSUT UU.SZCU
UU.VRUT UU.ZNPU
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.02e+21 dyne-cm
Mw = 3.47
Z = 10 km
Plane Strike Dip Rake
NP1 5 90 -150
NP2 275 60 0
Principal Axes:
Axis Value Plunge Azimuth
T 2.02e+21 21 136
N 0.00e+00 60 5
P -2.02e+21 21 234
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.04e+20
Mxy -1.72e+21
Mxz -8.80e+19
Myy -3.04e+20
Myz 1.01e+21
Mzz 0.00e+00
#########-----
#############---------
###############-------------
################--------------
##################----------------
###################-----------------
####################------------------
########-------------######-------------
###-----------------############--------
#--------------------################-----
---------------------##################---
---------------------####################-
---------------------#####################
--------------------####################
-------------------#####################
---- -----------####################
--- P -----------########### #####
-- -----------########### T ####
--------------########### ##
-------------###############
---------#############
-----#########
Global CMT Convention Moment Tensor:
R T P
0.00e+00 -8.80e+19 -1.01e+21
-8.80e+19 3.04e+20 1.72e+21
-1.01e+21 1.72e+21 -3.04e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130916141231/index.html
|
REVIEWED BY NSL STAFF
Event ID:423851
Origin ID:1047662
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2013/09/16 (259) 14:12:32.00 37.5096 -115.4806 1047662
Depth = 10.0 (km)
Mw = 3.49
Mo = 2.16x10^21 (dyne x cm)
Percent Double Couple = 99 %
Percent CLVD = 1 %
no ISO calculated
Epsilon=-0.00
Percent Variance Reduction = 52.35 %
Total Fit = 30.44
Major Double Couple
strike dip rake
Nodal Plane 1: 170 63 178
Nodal Plane 2: 261 88 27
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= 0.06 Mtt= -0.63 Mff= 0.57
Mrt= -0.95 Mrf= -0.21 Mtf= 1.83 EXP=21
Moment Tensor Elements: Cartesian Coordinates
-0.63 -1.83 -0.95
-1.83 0.57 0.21
-0.95 0.21 0.06
Eigenvalues:
T-axis eigenvalue= 2.16
N-axis eigenvalue= -0.01
P-axis eigenvalue= -2.15
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 2.16 trend=129 plunge=20
N-axis ev= 0.00 trend=265 plunge=63
P-axis ev=-2.16 trend=33 plunge=17
Maximum Azmuithal Gap=282 Distance to Nearest Station= 39.6 (km)
Number of Stations (D=Displacement/V=Velocity) Used=3 (defining only)
PRN.NN.D SHP.NN.D CCUT.UU.D
#####------------
########------------- -
##########------------- P ---
###########-------------- -----
###########------------------------
############-------------------------
-#############---------------------------
##############---------------------------
###############----------------------------
###############----------------------------
###############---------------##############
###############---##########################
############################################
#######-------##############################
---------------############################
---------------############################
---------------##########################
--------------##########################
---------------################# ####
--------------################ T ###
--------------############### #
-------------################
------------#############
----------########
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
PRN.NN (D) Y 39.6 106 286 0.020 0.080 PRN.NN.wus.glib
SHP.NN (D) Y 115.7 166 346 0.020 0.080 SHP.NN.wus.glib
CCUT.UU (D) Y 186.9 88 269 0.020 0.080 CCUT.UU.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2013/09/16 14:46:54
mtinv Version 2.1_DEVEL OCT2008
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 90 70 -15 3.15 0.2906
WVFGRD96 1.0 95 90 5 3.16 0.3127
WVFGRD96 2.0 275 90 0 3.25 0.3882
WVFGRD96 3.0 95 90 0 3.29 0.4146
WVFGRD96 4.0 275 70 0 3.34 0.4308
WVFGRD96 5.0 275 70 -5 3.36 0.4428
WVFGRD96 6.0 275 70 -5 3.38 0.4512
WVFGRD96 7.0 275 65 5 3.41 0.4585
WVFGRD96 8.0 275 60 5 3.45 0.4659
WVFGRD96 9.0 275 60 5 3.46 0.4683
WVFGRD96 10.0 275 60 0 3.47 0.4692
WVFGRD96 11.0 275 60 0 3.49 0.4686
WVFGRD96 12.0 275 60 0 3.50 0.4664
WVFGRD96 13.0 275 65 0 3.50 0.4638
WVFGRD96 14.0 275 65 0 3.51 0.4600
WVFGRD96 15.0 275 65 0 3.52 0.4555
WVFGRD96 16.0 270 70 -15 3.53 0.4509
WVFGRD96 17.0 270 70 -20 3.54 0.4456
WVFGRD96 18.0 270 70 -15 3.54 0.4397
WVFGRD96 19.0 270 75 -20 3.55 0.4336
WVFGRD96 20.0 270 70 -15 3.56 0.4274
WVFGRD96 21.0 270 70 -15 3.57 0.4209
WVFGRD96 22.0 270 70 -15 3.57 0.4143
WVFGRD96 23.0 270 70 -15 3.58 0.4075
WVFGRD96 24.0 270 70 -15 3.59 0.4010
WVFGRD96 25.0 270 75 -15 3.59 0.3943
WVFGRD96 26.0 270 75 -15 3.60 0.3876
WVFGRD96 27.0 275 75 -15 3.61 0.3808
WVFGRD96 28.0 275 75 -15 3.61 0.3741
WVFGRD96 29.0 275 75 -15 3.62 0.3671
The best solution is
WVFGRD96 10.0 275 60 0 3.47 0.4692
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00