Location

Location ANSS

The ANSS event ID is nn00423851 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00423851/executive.

2013/09/16 14:12:31 37.532 -115.471 0.0 3.8 Nevada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/09/16 14:12:31:0  37.53 -115.47   0.0 3.8 Nevada
 
 Stations used:
   AE.U15A AE.W13A BK.CMB CI.ADO CI.BEL CI.BFS CI.CHF CI.CWC 
   CI.DGR CI.EDW2 CI.FUR CI.GMR CI.GRA CI.GSC CI.HEC CI.IRM 
   CI.ISA CI.MLAC CI.MPM CI.NEE2 CI.SHO CI.SLA CI.TIN CI.TUQ 
   CI.VCS CI.VES II.PFO IM.NV31 LB.BMN NN.KVN NN.OMMB NN.PRN 
   NN.RYN NN.SHP NN.UNVG NN.WTNK PB.B086A TA.R11A TA.Y12C 
   US.TPNV UU.CCUT UU.KNB UU.LCMT UU.PKCU UU.PSUT UU.SZCU 
   UU.VRUT UU.ZNPU 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.02e+21 dyne-cm
  Mw = 3.47 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1        5    90   -150
   NP2      275    60     0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.02e+21     21     136
    N   0.00e+00     60       5
    P  -2.02e+21     21     234

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.04e+20
       Mxy    -1.72e+21
       Mxz    -8.80e+19
       Myy    -3.04e+20
       Myz     1.01e+21
       Mzz     0.00e+00
                                                     
                                                     
                                                     
                                                     
                     #########-----                  
                 #############---------              
              ###############-------------           
             ################--------------          
           ##################----------------        
          ###################-----------------       
         ####################------------------      
        ########-------------######-------------     
        ###-----------------############--------     
       #--------------------################-----    
       ---------------------##################---    
       ---------------------####################-    
       ---------------------#####################    
        --------------------####################     
        -------------------#####################     
         ----   -----------####################      
          --- P -----------###########   #####       
           --   -----------########### T ####        
             --------------###########   ##          
              -------------###############           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  0.00e+00  -8.80e+19  -1.01e+21 
 -8.80e+19   3.04e+20   1.72e+21 
 -1.01e+21   1.72e+21  -3.04e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130916141231/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 275
      DIP = 60
     RAKE = 0
       MW = 3.47
       HS = 10.0

The NDK file is 20130916141231.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.

        
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2013/09/16 14:12:31:0  37.53 -115.47   0.0 3.8 Nevada
 
 Stations used:
   AE.U15A AE.W13A BK.CMB CI.ADO CI.BEL CI.BFS CI.CHF CI.CWC 
   CI.DGR CI.EDW2 CI.FUR CI.GMR CI.GRA CI.GSC CI.HEC CI.IRM 
   CI.ISA CI.MLAC CI.MPM CI.NEE2 CI.SHO CI.SLA CI.TIN CI.TUQ 
   CI.VCS CI.VES II.PFO IM.NV31 LB.BMN NN.KVN NN.OMMB NN.PRN 
   NN.RYN NN.SHP NN.UNVG NN.WTNK PB.B086A TA.R11A TA.Y12C 
   US.TPNV UU.CCUT UU.KNB UU.LCMT UU.PKCU UU.PSUT UU.SZCU 
   UU.VRUT UU.ZNPU 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.02e+21 dyne-cm
  Mw = 3.47 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1        5    90   -150
   NP2      275    60     0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.02e+21     21     136
    N   0.00e+00     60       5
    P  -2.02e+21     21     234

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.04e+20
       Mxy    -1.72e+21
       Mxz    -8.80e+19
       Myy    -3.04e+20
       Myz     1.01e+21
       Mzz     0.00e+00
                                                     
                                                     
                                                     
                                                     
                     #########-----                  
                 #############---------              
              ###############-------------           
             ################--------------          
           ##################----------------        
          ###################-----------------       
         ####################------------------      
        ########-------------######-------------     
        ###-----------------############--------     
       #--------------------################-----    
       ---------------------##################---    
       ---------------------####################-    
       ---------------------#####################    
        --------------------####################     
        -------------------#####################     
         ----   -----------####################      
          --- P -----------###########   #####       
           --   -----------########### T ####        
             --------------###########   ##          
              -------------###############           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  0.00e+00  -8.80e+19  -1.01e+21 
 -8.80e+19   3.04e+20   1.72e+21 
 -1.01e+21   1.72e+21  -3.04e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130916141231/index.html
	
REVIEWED BY NSL STAFF

Event ID:423851
Origin ID:1047662
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2013/09/16 (259) 14:12:32.00 37.5096 -115.4806 1047662
	Depth =  10.0 (km)
	Mw    =  3.49
	Mo    =  2.16x10^21 (dyne x cm)

	Percent Double Couple =  99 %
	Percent CLVD          =   1 %
	no ISO calculated
	Epsilon=-0.00
	 Percent Variance Reduction =  52.35 %
	 Total Fit                  =  30.44 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 170  63  178
		Nodal Plane 2: 261  88   27

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr=  0.06 Mtt= -0.63 Mff=  0.57
		Mrt= -0.95 Mrf= -0.21 Mtf=  1.83 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-0.63 -1.83 -0.95
		-1.83  0.57  0.21
		-0.95  0.21  0.06

	Eigenvalues:
		T-axis eigenvalue=  2.16
		N-axis eigenvalue= -0.01
		P-axis eigenvalue= -2.15

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 2.16 trend=129 plunge=20
		N-axis ev= 0.00 trend=265 plunge=63
		P-axis ev=-2.16 trend=33 plunge=17

	Maximum Azmuithal Gap=282 Distance to Nearest Station= 39.6 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=3 (defining only)
		
	 PRN.NN.D SHP.NN.D CCUT.UU.D


              #####------------                             
          ########-------------   -                         
        ##########------------- P ---                       
      ###########--------------   -----                     
     ###########------------------------                    
    ############-------------------------                   
  -#############---------------------------                 
  ##############---------------------------                 
 ###############----------------------------                
 ###############----------------------------                
 ###############---------------##############               
 ###############---##########################               
 ############################################               
 #######-------##############################               
 ---------------############################                
 ---------------############################                
  ---------------##########################                 
   --------------##########################                 
   ---------------#################   ####                  
     --------------################ T ###                   
      --------------###############   #                     
        -------------################                       
          ------------#############                         
              ----------########                            
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
PRN.NN (D) 	Y 	    39.6  	106  	286  	0.020 	0.080 PRN.NN.wus.glib
SHP.NN (D) 	Y 	   115.7  	166  	346  	0.020 	0.080 SHP.NN.wus.glib
CCUT.UU (D) 	Y 	   186.9  	 88  	269  	0.020 	0.080 CCUT.UU.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2013/09/16 14:46:54

mtinv Version 2.1_DEVEL OCT2008

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    70   -15   3.15 0.2906
WVFGRD96    1.0    95    90     5   3.16 0.3127
WVFGRD96    2.0   275    90     0   3.25 0.3882
WVFGRD96    3.0    95    90     0   3.29 0.4146
WVFGRD96    4.0   275    70     0   3.34 0.4308
WVFGRD96    5.0   275    70    -5   3.36 0.4428
WVFGRD96    6.0   275    70    -5   3.38 0.4512
WVFGRD96    7.0   275    65     5   3.41 0.4585
WVFGRD96    8.0   275    60     5   3.45 0.4659
WVFGRD96    9.0   275    60     5   3.46 0.4683
WVFGRD96   10.0   275    60     0   3.47 0.4692
WVFGRD96   11.0   275    60     0   3.49 0.4686
WVFGRD96   12.0   275    60     0   3.50 0.4664
WVFGRD96   13.0   275    65     0   3.50 0.4638
WVFGRD96   14.0   275    65     0   3.51 0.4600
WVFGRD96   15.0   275    65     0   3.52 0.4555
WVFGRD96   16.0   270    70   -15   3.53 0.4509
WVFGRD96   17.0   270    70   -20   3.54 0.4456
WVFGRD96   18.0   270    70   -15   3.54 0.4397
WVFGRD96   19.0   270    75   -20   3.55 0.4336
WVFGRD96   20.0   270    70   -15   3.56 0.4274
WVFGRD96   21.0   270    70   -15   3.57 0.4209
WVFGRD96   22.0   270    70   -15   3.57 0.4143
WVFGRD96   23.0   270    70   -15   3.58 0.4075
WVFGRD96   24.0   270    70   -15   3.59 0.4010
WVFGRD96   25.0   270    75   -15   3.59 0.3943
WVFGRD96   26.0   270    75   -15   3.60 0.3876
WVFGRD96   27.0   275    75   -15   3.61 0.3808
WVFGRD96   28.0   275    75   -15   3.61 0.3741
WVFGRD96   29.0   275    75   -15   3.62 0.3671

The best solution is

WVFGRD96   10.0   275    60     0   3.47 0.4692

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 08:56:28 PM CDT 2024