The ANSS event ID is ak013bpso0xd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak013bpso0xd/executive.
2013/09/12 04:41:02 59.774 -152.831 11.3 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/09/12 04:41:02:0 59.77 -152.83 11.3 4.1 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CAST AK.CCB AK.CNP AK.CRQ AK.EYAK AK.FID AK.GHO AK.GLI AK.HIN AK.KIAG AK.KNK AK.KTH AK.MCK AK.MLY AK.NICH AK.PAX AK.PPLA AK.PTPK AK.RC01 AK.SAW AK.SCM AK.SGA AK.SKN AK.SLK AK.SWD AK.TGL AK.WAX AT.SVW2 II.KDAK IM.IL31 TA.HDA TA.POKR TA.TCOL Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 19 km Plane Strike Dip Rake NP1 205 81 -150 NP2 110 60 -10 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 14 334 N 0.00e+00 59 219 P -1.60e+22 27 72 Moment Tensor: (dyne-cm) Component Value Mxx 1.09e+22 Mxy -9.70e+21 Mxz 1.39e+21 Myy -8.51e+21 Myz -7.89e+21 Mzz -2.41e+21 ############## # ###############--- #### T #############-------- ##### ############---------- #####################------------- #####################--------------- #####################----------------- -####################------------ ---- --##################------------- P ---- ----################-------------- ----- ------#############----------------------- -------###########------------------------ ----------#######------------------------- ------------####------------------------ ---------------#------------------------ -------------#######----------------## -----------######################### ----------######################## -------####################### ------###################### --#################### ############## Global CMT Convention Moment Tensor: R T P -2.41e+21 1.39e+21 7.89e+21 1.39e+21 1.09e+22 9.70e+21 7.89e+21 9.70e+21 -8.51e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130912044102/index.html |
STK = 110 DIP = 60 RAKE = -10 MW = 4.07 HS = 19.0
The NDK file is 20130912044102.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/09/12 04:41:02:0 59.77 -152.83 11.3 4.1 Alaska Stations used: AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CAST AK.CCB AK.CNP AK.CRQ AK.EYAK AK.FID AK.GHO AK.GLI AK.HIN AK.KIAG AK.KNK AK.KTH AK.MCK AK.MLY AK.NICH AK.PAX AK.PPLA AK.PTPK AK.RC01 AK.SAW AK.SCM AK.SGA AK.SKN AK.SLK AK.SWD AK.TGL AK.WAX AT.SVW2 II.KDAK IM.IL31 TA.HDA TA.POKR TA.TCOL Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 19 km Plane Strike Dip Rake NP1 205 81 -150 NP2 110 60 -10 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 14 334 N 0.00e+00 59 219 P -1.60e+22 27 72 Moment Tensor: (dyne-cm) Component Value Mxx 1.09e+22 Mxy -9.70e+21 Mxz 1.39e+21 Myy -8.51e+21 Myz -7.89e+21 Mzz -2.41e+21 ############## # ###############--- #### T #############-------- ##### ############---------- #####################------------- #####################--------------- #####################----------------- -####################------------ ---- --##################------------- P ---- ----################-------------- ----- ------#############----------------------- -------###########------------------------ ----------#######------------------------- ------------####------------------------ ---------------#------------------------ -------------#######----------------## -----------######################### ----------######################## -------####################### ------###################### --#################### ############## Global CMT Convention Moment Tensor: R T P -2.41e+21 1.39e+21 7.89e+21 1.39e+21 1.09e+22 9.70e+21 7.89e+21 9.70e+21 -8.51e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130912044102/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 2.05e+15 N-m Magnitude 4.1 Percent DC 87% Depth 19.0 km Updated 2013-09-12 14:09:35 UTC Author neic Catalog ak Contributor us Code ak10804220-neic-mwr Principal Axes Axis Value Plunge Azimuth T 2.117 24 72 N -0.135 65 242 P -1.981 4 340 Nodal Planes Plane Strike Dip Rake NP1 209 76 20 NP2 114 70 165 |
![]() |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 225 45 -80 3.72 0.3115 WVFGRD96 2.0 55 45 -95 3.86 0.3956 WVFGRD96 3.0 25 70 -35 3.84 0.3896 WVFGRD96 4.0 30 80 -30 3.87 0.4038 WVFGRD96 5.0 30 85 -30 3.90 0.4223 WVFGRD96 6.0 30 85 -30 3.92 0.4426 WVFGRD96 7.0 210 90 25 3.93 0.4634 WVFGRD96 8.0 30 90 -35 3.98 0.4837 WVFGRD96 9.0 30 90 -30 3.99 0.4969 WVFGRD96 10.0 105 50 -15 3.97 0.5158 WVFGRD96 11.0 105 50 -15 3.98 0.5297 WVFGRD96 12.0 110 55 -15 4.01 0.5419 WVFGRD96 13.0 110 55 -10 4.01 0.5513 WVFGRD96 14.0 110 55 -10 4.02 0.5582 WVFGRD96 15.0 110 55 -10 4.03 0.5631 WVFGRD96 16.0 110 60 -15 4.05 0.5678 WVFGRD96 17.0 110 60 -15 4.06 0.5711 WVFGRD96 18.0 110 60 -15 4.07 0.5725 WVFGRD96 19.0 110 60 -10 4.07 0.5730 WVFGRD96 20.0 115 60 10 4.08 0.5724 WVFGRD96 21.0 115 60 10 4.09 0.5700 WVFGRD96 22.0 115 60 10 4.10 0.5682 WVFGRD96 23.0 115 60 10 4.10 0.5648 WVFGRD96 24.0 115 60 10 4.11 0.5593 WVFGRD96 25.0 115 60 15 4.11 0.5542 WVFGRD96 26.0 115 60 15 4.12 0.5471 WVFGRD96 27.0 115 60 15 4.12 0.5390 WVFGRD96 28.0 115 60 15 4.13 0.5311 WVFGRD96 29.0 115 60 15 4.13 0.5197 WVFGRD96 30.0 115 60 20 4.13 0.5106 WVFGRD96 31.0 115 65 20 4.15 0.5011 WVFGRD96 32.0 115 65 20 4.15 0.4891 WVFGRD96 33.0 115 65 20 4.16 0.4797 WVFGRD96 34.0 115 65 25 4.16 0.4699 WVFGRD96 35.0 115 65 25 4.16 0.4617 WVFGRD96 36.0 115 65 25 4.17 0.4544 WVFGRD96 37.0 115 65 25 4.18 0.4468 WVFGRD96 38.0 115 65 25 4.19 0.4408 WVFGRD96 39.0 115 65 25 4.20 0.4358 WVFGRD96 40.0 110 60 -25 4.30 0.4396 WVFGRD96 41.0 110 60 -25 4.30 0.4390 WVFGRD96 42.0 110 60 -25 4.31 0.4384 WVFGRD96 43.0 110 60 -25 4.32 0.4379 WVFGRD96 44.0 110 60 -25 4.33 0.4371 WVFGRD96 45.0 110 60 -20 4.33 0.4365 WVFGRD96 46.0 110 65 -25 4.34 0.4358 WVFGRD96 47.0 110 65 -25 4.35 0.4351 WVFGRD96 48.0 110 65 -25 4.35 0.4341 WVFGRD96 49.0 110 65 -20 4.35 0.4326
The best solution is
WVFGRD96 19.0 110 60 -10 4.07 0.5730
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00